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Multivariate transfer entropy (TE) is a model-free approach to detect causalities in multivariate time
series. It is able to distinguish direct from indirect causality and common drivers without assuming any
underlying model. But despite these advantages it has mostly been applied in a bivariate setting as it is
hard to estimate reliably in high dimensions since its definition involves infinite vectors. To overcome this
limitation, we propose to embed TE into the framework of graphical models and present a formula that
decomposes TE into a sum of finite-dimensional contributions that we call decomposed transfer entropy.
Graphical models further provide a richer picture because they also yield the causal coupling delays. To
estimate the graphical model we suggest an iterative algorithm, a modified version of the PC-algorithm
with a very low estimation dimension. We present an appropriate significance test and demonstrate the
method’s performance using examples of nonlinear stochastic delay-differential equations and observa-

tional climate data (sea level pressure).
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Inferring causal relations between processes when only
some time series of measurements are given is of very
general interest in many fields of science, especially when
the underlying mechanisms are poorly understood.
Consider the climate system, where new observational
technologies lead to an abundance of observational data
and yet even the interaction mechanism between such
important systems as the El Nifio southern oscillation
and the Indian monsoon system is not fully understood
[1,2]. Also the inference of functional brain connectivity
in neuroscience and the discovery of causal relationships
in economic data are of great importance [3,4]. One can
view the processes as nodes of a graph where the links
denote interactions. Now the problem is whether these
links can be interpreted as ‘“‘causal” interactions. Towards
a causal interpretation, statistical methods need to be able
to (1) measure associations, (2) measure also time delays,
and (3) exclude other influences [5]. Usually it is impos-
sible to exclude all other influences, especially if the
system cannot be experimentally manipulated, and there-
fore the term ‘“causal” can only be understood to be
meant relative to the system under study, i.e., in our
framework the processes that comprise the nodes of the
graph. The main caveats against a causal interpretation
are the possibility of spurious causalities due to indirect
influences or common drivers. For example, if a causal
interaction is given by X — Y — Z, a bivariate analysis
would give a significant link between X and Z that is
detected as being only indirect in a multivariate analysis
including Y.

Several existing measures fulfill requirements (1) and
(2), e.g., classical product-moment correlation analysis or
synchronization [6], if delays are taken into account. Some
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methods are also able to exclude spurious causalities due to
other processes. In classical statistics this problem can be
addressed by assuming some class of linear or nonlinear
parametric models and estimating the model that best
explains the time series. A similar model-based test is
Granger causality [7] and the framework of methods using
phase coherences [8]. There also exist methods that are less
restrictive in that they do not require to specify a certain
functional form, but still require a priori knowledge of the
distributions or general structure of the model [3].
Therefore, the absence of a link in a graph inferred with
these model-based methods does not imply that the pro-
cesses are not interacting since only a certain class of
causal mechanisms has been tested.

In the framework of information theory [9], no such
model-based restrictions exist because interactions are
viewed as transfers of information. The most widely ap-
plied information-theoretic functional is (conditional)
mutual information (CMI) [4], especially in the form of
(multivariate) transfer entropy (TE) [10]. As formally de-
fined below, the common definition of TE leads to the
problem of estimating infinite-dimensional densities,
which is commonly called the “‘curse of dimensionality”
and strongly affects the reliability of causal inference as
demonstrated in Fig. 1.

In this Letter we show how this severe limitation can be
overcome by embedding TE into the framework of graph-
ical models. In this framework we derive a formula that
decomposes TE into a sum of finite-dimensional contribu-
tions that we call decomposed transfer entropy (DTE). This
can drastically reduce the estimation dimension and ena-
bles a much more reliable estimation of TE even from real-
world data. Furthermore, graphical models provide a richer
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FIG. 1 (color online). Estimated TE between all subprocesses
X, Y, Z, W for an example process [a discrete-time sampling of
Eq. (5) that will be analyzed later] with true coupling structure
given by the black arrows. If we truncate the infinite past vectors
used in the common definition of TE at 15 lags, the estimation
dimension is 61. The true TE of all gray and red links is zero,
since they do not represent direct couplings. So of the four
estimates of comparable size marked in red boxes, only the
link ¥ — W is a correctly identified coupling.

picture of causal interactions because they also yield the
causal coupling delays. We demonstrate the advantages of
this approach on a model and on observational climate data
of mean sea level pressure in Eastern Europe.

To derive DTE, we introduce the following notation:
Given a stationary multivariate discrete-time stochastic
process X, we denote its uni- or multivariate subprocesses
X, Y, Z, W,...and the values at time ¢ as X,, X,, . ... Their
pasts are defined as X; = (X,_, X;p,...) and X; =
(X,_1, X,_5,...) and with a slight abuse of notation X,
can be formally treated as a subset of X; . Now the TE
IIE, = I(X;; Y,IX; \ X; ) is the reduction in uncertainty
about Y, when learning the past of X,, if the rest of the past
of X,, given by X; \ X, , is already known. There are two
infinite-dimensional parts in TE: X, and X; \ X, . We
address the first by decomposing TE into contributions of
individual lags of X via the chain rule (for detailed deri-
vations, see the Supplemental Material [11]),

IX Y IXPNX)) = D IX, s YIX\ X, X ).

=1

ey

Now the decisive step to escape the still infinite dimension
of the condition in each term is done by utilizing the theory
of graphical models [12,13]. Looking at Fig. 2(a), the main
idea stems from a Markov property that relates the sepa-
ration of nodes in the graph to the conditional independ-
ences in the process ([13], theorem 4.1). It implies that

X, YIXON\X X ) = 1(X, o Ytl‘SY,,X,,T): (2)

for a certain finite subset Sy y = C X, \ X; UX,,of the
conditions [see Fig. 2(a)]. Once the time series graph
(defined below) of the process is known, suitable sets
Sy,x, . can be determined from it and the TE can be
estimated using only low-dimensional densities. The re-
maining infinite sum can be truncated at some finite 7*
since the terms typically decay exponentially with 7,

a) time series graph b) process graph
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FIG. 2 (color online). Causal interactions in a multivariate
process X. (a) Time series graph (see definition in text). The
boxes mark different sets of conditions for the CMI between
X,—, at =2 and Y, (marked by the black dots): the terms in
Eq. (1) use the infinite set X; \ X; UX,_, (gray dotted line).
But only the finite set Sy, x,__ (red dashed line) is needed to
satisfy Eq. (2). Sy,x, ., must be chosen so that it separates the
skipped infinite conditions (X;” \ X;” UX,_ ;)\ Sy, x,__ from Y,
in the graph (for a formal definition of paths and separation, see
[13]). The even smaller set of parents Py (blue box, gray nodes)
separates Y, from the past of the whole process X, \ Py,, which
is used in the algorithm to estimate the graph. (b) Process graph,
which aggregates the information in the time series graph for
better visualization (labels denote the lags).

LEy = IR, = z I(X, 3 Yz|SY,,x,,,): 3)
=1

with 7% chosen as the smallest 7 for which the estimated
remainder is smaller than some given absolute tolerance
(see the Supplemental Material for details [11]). This can
improve the estimation of TE considerably as compared to
the direct estimation, although the sets Sy x, _ and the
resulting dimensions can still be large.

But how can the required time series graph be esti-
mated? As depicted in Fig. 2(a), each node in that graph
represents a subprocess X at a certain time ¢. Nodes X;_,
and Y, are connected by a directed link X,_, — Y, pointing
forward in time if and only if 7 > 0 and

I(Xt_’]'; Ytlx; \ {XZ—T}) > 0’ (4)

and nodes X, and Y, are connected by an undirected con-
temporaneous link (visualized by a line) if and only if
IXs Y IX o \{X,, Y,}) >0 [13]. If Y # X, we say that
the link X, . — Y, represents a coupling at lag 7, while for
Y = X itrepresents an autodependency at lag 7, so the time
series graph gives a richer picture of causal interrelations
than TE, including the causal coupling delays and contem-
poraneous links as well, while the total influence of X on Y
can be measured by TE. Figure 2(a) shows the time series
graph for a small example of a multivariate process with
couplings and auto-dependencies, which can be summa-
rized in a process graph [see Fig. 2(b)].

As shown in Fig. 2(a), there is an important difference
between the conditions Sy x_ and the (direct) parents of
Y,, denoted Py = {X,_,:X € X, X,_, — Y,}. This means
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in particular that the terms in Eq. (3) can be nonzero also
for lags 7 for which there is no link in the graph and
therefore they cannot be used directly as a measure of
lag-specific coupling strength, a topic we explore further
in a separate paper. Since Py (or any subset of X, that
contains Py ) will separate Y, from X; \ Py, in the graph,
I(X,—; Y|Py \{X,—,}) >0 defines links equivalent to
Eq. (4), which is used in the following algorithm to esti-
mate the time series graph.

The estimation of graphical models is very similar to the
problem of inferring the directed acyclic graph [14] of a set
of random variables. To this end, the idea of the PC-
algorithm (named after its inventors [14]) is to iteratively
unveil the links by testing for conditional independence
between all possible pairs of nodes conditioned on itera-
tively more conditions and testing all combinations among
them. Thereby, the dimension stays as low as possible in
every iteration step. We adapt this algorithm for time series
and propose some modifications to speed up the perform-
ance. The algorithm starts with no a priori knowledge
about the links and iteratively learns the set of parents for
each Y. The union of parents together with the contempo-
raneous links then comprises the graph.

For every Y, first we estimate the MIs I(X,_,;Y,) and
initialize the preliminary parents j)yr ={X,_ XeEX0<
T =< Tpmax 1(X,_;; Y,) > 0}. This set also contains indirect
links that are now iteratively removed by testing whether
the CMI between Y, and each X,_, € j)yt conditioned on
the incrementally increased set of conditions j",’;‘r" - j’Y’
vanishes. In the outer loop, iterate n over increasing num-
ber of conditions, starting with some ny > 0. In the inner
loop, iterate i through all combinations of picking n nodes
from j’yr to define the conditions j?';;i in this step, and
estimate the CMI I(X,_,; Y, ’P’;’f )forall X, , € j)Y’. After
each step, the nodes X, , with I(X, ,; Y,I’j’;"ti) =0 are
removed from ’?Y[ and the i-iteration stops if all possible
combinations have been tested. If the cardinality IijrI =
n, the algorithm converges, else, increase n by one and
iterate again.

Once the parents of each process are known, the same
algorithm for 7 = 0 can be used to infer the contempora-
neous neighbors Ny = {X,;:X € X,, X, — Y}, where now

N2

undirected links are removed if I(X;;Y,|Py, Ny
PN r{,’[i)) = (. The free parameters of this method are
the maximum lag 7., the initial number of conditions
ngy, the significance threshold I* to determine whether
IX, ;Y flj);l}i) >0, and any parameters of the estimator
of CMI. A suitable significance test and details of the
algorithm are discussed in the Supplemental Material
[11]. For the estimation of CMI we use a k-nearest neigh-
bor estimator [15,16].

Now, we demonstrate the method first on a model sys-
tem and second on real data. In theory, CMI measures any

statistical associations and the Markov property is fulfilled
by a large class of model systems ([13], condition (S)).
CMI has been applied to time-continuous chaotic models
in [15] and in [17] it has been shown that dynamical noise
actually helps in the coupling analysis. The latter work
demonstrated that for a precise inference of coupling lags
one needs enough dynamical noise in X that can be mea-
sured in Y. Therefore, we demonstrate the method with a
system of four stochastic delay-differential equations and
couple them linearly and nonlinearly, also in the stochastic
terms. This system of Ornstein-Uhlenbeck processes can
be interpreted as nonlinearly coupled particles, each fluc-
tuating in its harmonic potential:

X = —0.5X(1) + 0.6W(t — 4)ny(0),

Y = —0.9Y(1) — 1.0X(t — 2) + 0.6Z(t — 5) + ny(2),

7Z = —0.7Z(t) — 0.5Y(t — 6) + 5,(¢),

W = —0.8W(r) — 0.4Y(t — 3)% + 0.05Y(t — 3) + 5y (1),
()

with independent unit variance white noise processes 7.(z).
Thus, we have a bidirectional feedback ¥ = Z and a feed-
back loop X — Y — W — X in which Y — W is nonlinear
and a stochastic coupling W — X. This system would be
hard to analyze using model-based approaches, especially
given short sample lengths as used here (T = 1000).
Throughout the analysis we have used a fixed significance
threshold 7* = 0.015 and a maximum lag 7., = 15.
Figure 3 shows the iteration steps. Step (0.0) gives the
result of an analysis using only MI, the first step of the
algorithm. We would wrongly infer that Y drives X, X
drives W, X and Z are coupled and conclude on a
long-range memory process within ¥ and Z at 7 = 12.
Also the precise coupling delays are buried under a broad
range of significant lags. The CMI values for each lag can

FIG. 3 (color online). Iterative steps in the analysis of model
Eq. (5), time series length T = 1000, integration time step dt =
0.01, sampling interval As = 100, MI and CMI estimated using
k = 100. The label (n.i) indicates the iteration step. (0.0) shows
the MI process graph. With an initial ny = 3 the next step (3.0)
(see the Supplemental Material [11]) with three conditions is
already almost identical to the converged graph ln\ step (3.1),

where the values in the boxes denote the estimate I°™F of TE via
Eq. (3) with 7" chosen such that I(X, - 1;Y;|Sy,x,_. ) has
declined below significance. Incorrect links and lag labels are
in red.
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be represented via lag functions as shown in the
Supplemental Material [11]. The algorithm proceeds as
follows. Considering the estimation of the parents of X,
we choose an initial ny = 3 and start with the links
with the weakest MI, Z at 7 = 1, 2, conditioned on the
three preliminary parents with the largest MI, ’Pito =
{X,_1, X;—2, W,_4}. As these links are due to Y which drives
Z and with one step delay also X via W (see process
graphs in Fig. 3), I(Zt_T;X,I’j’;‘tO) for 7 = 1,2 vanishes
and we remove these links from ’j)x,- The second weakest
link, Y,_g — X;, is indirectly mediated via W and thus
I(Y,_S;X,I’Pi’to) vanishes and we remove this link as
well. Next, we check the coupling from W and the auto-
dependency from X, , conditioned on the same nodes,
whereupon the links from W,_s and X,_, vanish. Now
the set ’PX/ is smaller than n = 3, i.e., all possible con-
ditions have been tested, and the algorithm for X converges
already in the second step. The analysis for the remaining
subprocesses is discussed in the Supplemental Material
[11]. Apart from some inaccuracy in the coupling lags,
which is due to the continuous nature of the system, this
yields the correct graph. While the dimension for the direct
estimation of TE is D = 7,, - 4 + 1 = 61, the dimension
using the graph and Eq. (3) is between 5 and 24 (depending
on Sy x, ). Itis interesting to compare TE with the model

parameters in Eq. (5): Z— Y has a higher /°™F than
X — Y, while the corresponding parameters are 0.6 and
1.0, respectively. TE as a measure of the total influence
between two processes, therefore, cannot be simply related
to the parameters of the underlying model.

To study the performance of the algorithm using a
significance test from shuffle surrogates, we ran 1000
numerical experiments with the class of nonlinear discrete
stochastic models. The results are shown in the
Supplemental Material [11] and indicate that, compared
to MI, the rate of false positives is strongly reduced, while
correct linear and nonlinear links are well detected.
Further, we found that a larger initial n, significantly
speeds up the performance.

We now analyze a climatological data set of daily mean
sea level pressure anomalies in the winter months of 1997—
2003 [18] at four locations in Eastern Europe indicated on
the map in Fig. 4. First, we give the statistical analysis and
then provide a climatological interpretation. From MI in
step (0.0), one would infer an almost fully connected graph
with a broad range of lags (see lag functions in the
Supplemental Material [11]). For example, we found a
strong ¥ — Z “link” and a “link” W — X with a delay
of about 2 days. The iteration using an initial n, = 2 con-
verges in the third step (2.1). The link ¥ — Z is now much
weaker (even below our significance threshold), because a
lot of the shared entropy is due to the common driver W.
Even more apparent, the W — X link vanishes due to the
condition on Y. Note that the contemporaneous links X — Z

FIG. 4 (color online).

Analysis of time series of mean sea level
pressure with 7 = 1268 using the same threshold as before and
Tmax = 10. (0.0) depicts the process graph for MI. The iteration
converges in step (2.1); step (2.0) and the lag functions are shown
in the Supplemental Material [11]. Labels are as in Fig. 3.

and W — Y are possibly due to spatial proximity. This
causal picture of a south-eastward “flow of entropy” is
consistent with the dynamical processes governing the
lower and middle atmosphere circulation in the considered
area. One usually observes a superposition of westerly
winds with traveling extratropical cyclones that traverse
the area and whose trajectories are regulated by the afore-
mentioned westerlies [19]. Consistent with the causal lags
of 1 or 2 days these processes act on short daily time scales.
We note that this causal structure might change in the high
troposphere where the influence of quasistationary plane-
tary waves and the Ferrel cell might noticeably modify an
above-mentioned causality. This analysis underlines the
importance of knowing coupling delays for physical inter-
pretations and serves as a first step to study more complex
systems like the Indian monsoon and El Nifio.

To conclude, we have addressed the problem of inferring
causal relations among multiple processes within the
model-free information-theoretic framework. For the com-
monly used TE, we have derived an exact decomposition
formula that enables an estimation using finite vectors.
Although the estimation dimension is drastically reduced,
it can still be quite high. The graphical model, on the other
hand, can be very efficiently estimated by a modification of
the PC-algorithm with much lower dimension. It gives a
complementary picture of causal relations among multiple
processes with precise coupling delays and contempora-
neous links. Thus, time resolved causal relations are much
easier to estimate than TE as a measure of the total influ-
ence between two processes. Now the limiting factor in the
construction of “causal” networks from brain or climate
data [2] is no longer the network size, but only the maxi-
mum degree, i.e., the number of parents.
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