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Length regulation of microtubules (MTs) is essential for many cellular processes. Molecular motors

like kinesin-8, which move along MTs and also act as depolymerases, are known as key players in MT

dynamics. However, the regulatory mechanisms of length control remain elusive. Here, we investigate a

stochastic model accounting for the interplay between polymerization kinetics and motor-induced

depolymerization. We determine the dependence of MT length and variance on rate constants and motor

concentration. Moreover, our analyses reveal how collective phenomena lead to a well-defined MT length.
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During the lifespan of a eukaryotic cell microtubules
(MTs) perform highly dynamic tasks. For instance, during
mitosis, they form the mitotic spindle, which searches,
captures, and separates the double set of chromosomes
[1]. To achieve such complex dynamic behavior there
need to be molecular mechanisms which allow a dynamic
control of MT length. There is much evidence that these
mechanisms rely on an intricate interplay of GTP hydro-
lysis [2], mechanical forces [3], and regulatory proteins
[4]. In particular, the role of the molecular motor families
kinesin-5 and kinesin-8 has been investigated: Several
in vivo experiments showed that both, the presence and
the concentration of such proteins, strongly affect the
functionality of the mitotic spindle [5,6]. This is supported
by in vitro experiments which specifically studied the
molecular mechanisms of interactions between motor pro-
teins and microtubules [7–13]. In general, it is accepted
that kinesin-8 hampers MT growth. In particular, it was
found that the plus end directed motor kinesin-8 of budding
yeast, Kip3p, depolymerizes MTs at the tip. To gain a
deeper understanding for the molecular mechanisms
underlying these depolymerization dynamics Varga et al.
[7,8] studied the interaction of Kip3p with stabilized MTs
not exhibiting dynamic instability [2,14]. The key result of
these experiments is that depolymerization is length de-
pendent, i.e., longer MTs depolymerize faster than shorter
ones. One main determinant of the observed length depen-
dence are molecular traffic jams which can successfully be
described by driven diffusive processes [15]. These find-
ings suggest, that length-dependent depolymerization in
combination with polymerization allows a cell to regulate
the length of MTs [7,8]. There are by now several theo-
retical studies addressing length regulation ranging from
MTs [16,17], over actin filaments [18] to fungi [19] and
flagellae [20].

In this Letter, we study the combined influence of spon-
taneous MT polymerization and motor-induced depoly-
merization. In our model we neglect MT dynamics at the
minus end as there the dynamic rates are much smaller than

the ones at the plus end [1]. Furthermore, under physi-
ological conditions often the minus end dynamics are
completely suppressed due to capping proteins [21]. We
build on a recently validated quantitative model for MT
depolymerization [8,15], and extend it by introducing po-
lymerization dynamics at the fast-growing plus end [1].
This accounts for MT growth mediated by spontaneous [2]
or enzymatically catalyzed [22] attachment of tubulin het-
erodimers to the tip. This approach enables us to study the
basic principles underlying length regulation which is
achieved by the antagonism between length-dependent
depolymerization and spontaneous polymerization dynam-
ics. We predict quantitative criteria for the parameter re-
gime where regulation is feasible. In addition, we calculate
both the mean length and the corresponding standard de-
viation, and thereby determine the accuracy at which regu-
lation is achieved.
To describe the MT dynamics we employ a driven

diffusive lattice gas model [23,24] as illustrated in Fig. 1.
Since MT protofilaments serve as independent tracks for
the motors [25,26], a MT can effectively be described by a
one-dimensional lattice of dynamic size LðtÞ. The size of a
tubulin heterodimer sets the basic length scale of the
lattice. The state of each site, i, is described by its occu-

FIG. 1 (color online). Illustration of the model. Motors attach
to and detach from the MT lattice at rates !a ¼ c ~!a and !d,
respectively. On the lattice particles hop to the right at rate �
provided that the next site is empty. At the right boundary, the
MT plus end, particles remove the last lattice site at rate � and
the MT lattice grows at rate �. The resulting antennalike density
profile ��ðxÞ is sketched in light gray.
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pation number, ni 2 f0; 1g, where ni ¼ 0 and ni ¼ 1 sig-
nify an empty and occupied site, respectively. On the MT
lattice the dynamics follow the totally asymmetric simple
exclusion process with Langmuir kinetics [24]: Motors can
attach to and detach from the MT at rates !a ¼ c ~!a and
!d, respectively, where c is the motor concentration in the
surrounding fluid; the binding constant is defined as K :¼
!a=!d. On the lattice, particles move to right at rate �
provided that the next site is empty; � ¼ 1 sets the basic
time scale. The combined effect of motor attachment in
proximity of the minus end and subsequent movement
towards the plus end leads to an accumulation of motors,
which finally results in an antennalike steady state profile
[8,15,27] as illustrated in Fig. 1. At a certain distance from
the minus end the density profiles saturate to the equilib-
rium Langmuir density �La ¼ K=ðK þ 1Þ [28]. The result-
ing accumulated density profiles in vicinity of the minus
end, ��ðxÞ, can be described by Lambert W functions
[15,24]. Moving further towards the right boundary (MT
minus end), the density profile is determined by the inter-
play of motor current and the boundary conditions at the
plus end. This entails a rich variety of collective phe-
nomena and leads to nontrivial density profiles [29,30].
In the present study, the right boundary is dynamic.
Motivated by the recent studies on kinesin-8 [6–12], we
consider the following scenario: When a motor arrives at
the MT tip, it detaches by removing the last MT site at rate
� [15]. In addition, subsuming the effects of spontaneous
and enzymatic polymerization, the MT is assumed to poly-
merize through the attachment of single tubulin hetero-
dimers at an effective rate �. These boundary conditions
lead to a dynamic MT length which is determined by the
combined effect of the particle current onto the last site,
polymerization, and depolymerization rates. A related
model has been suggested in Ref. [31].

The dynamic length of the MT, LðtÞ, is determined by
the particle density at the MT plus end �þðLÞ,

@tLðtÞ ¼ ���þðLÞ þ �: (1)

This equation defines a critical density �cþ ¼ �=�, at
which the MT length is in a steady state, @tL ¼ 0. For
tip densities smaller or larger than �cþ the MT grows or
shrinks, respectively. As the tip density is fed by the motor
current towards the tip, it depends on the accumulated
motor density in bulk ��ðxÞ. This suggests the following
mechanism for MT length regulation: On short MTs, the
accumulated motor density is low, and therefore also the tip
density �þðLÞ. As long as �þðLÞ<�cþ the MT grows. In
contrast, for longer MTs higher accumulated motor and tip
densities are reached which eventually result in MT
depolymerization once �þðLÞ> �cþ. However, this
mechanism is only expected to work if the tip is not
growing too fast: Above a critical polymerization rate the
particle current feeding the tip density can no longer follow
the advancing tip.

To quantify these heuristic arguments and determine the
precise conditions under which length regulation is fea-
sible and which length is adjusted, the tip density has to be
determined. This requires analyzing the intricate interplay
between molecular crowding due to high motor density
[23,24] and transport bottlenecks at the plus end [15,32].
In addition, this boundary is highly dynamic, and calcu-
lations of the tip density are more intricate than for stan-
dard driven diffusive models for which the size of the
lattice is constant [29,30,33].
To make further progress, we first consider a simplified

model where we disregard spatial variations of the density
profile. In detail, we assume a constant density �� that
serves as a particle reservoir at the left boundary, neglect
attachment and detachment kinetics, but leave the dynam-
ics at the plus end unchanged; see Fig. 2(a). This allows us
to focus on the dynamics at the plus end and to unravel how
they depend on the reservoir density ��. Since we find that
the density profiles adapt adiabatically to a dynamic lattice
size [34], the results for the full model can be inferred upon
replacing �� by ��ðxÞ. As the length of the lattice is
dynamic, we perform our calculations in a comoving frame
fixed to the right boundary. In this frame, a polymerization
event corresponds to the simultaneous movement of all
particles on the lattice to the minus end by one unit, while
depolymerization results in an instantaneous shift to the
right. Thus, in a mean-field approximation [hninji ¼
hniihnji ¼ �i�j] the particle current in bulk is given by

Jð�b; �þÞ ¼ �bð1� �bÞ � ��b þ ��þ�b; (2)

where �b is the motor density in bulk. The first term
describes the hopping processes, the second and third
term account for simultaneous movement of all particles

FIG. 2 (color online). (a) Illustration of the simplified model.
(b) Phase diagram as a function of the rates � and �. The gray
shaded area indicates regions in phase space in which regulation
is possible in the full model. The gray area indicates regions in
phase space where the MT shrinks in the simplified model. In the
full model, for �� ¼ �La length regulation is only possible in the
gray area as explained in detail in the main text. (c) Comparison
of simulation data with analytical results for the tip density �þ.
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due to polymerization and depolymerization, respectively.
Importantly, the bulk current explicitly depends on the tip
density and thereby on the right boundary.

To determine the phase behavior we employ the
Extremal Current Principle (ECP) [35–37] relying on two
velocities: The collective velocity vcollð�Þ ¼ @�J deter-

mines the direction in which a local density perturbation
spreads. Thereby, one is able to determine whether a
certain bulk density is stable against perturbations, i.e.,
for a density � stable at the left (right) boundary vcollð�Þ>
0 (vcollð�Þ< 0) holds. The boundary conditions result in
densities at the plus and the minus end, respectively, whose
stabilities can now be tested employing vcoll. If these
densities are stable against small perturbations, we call
them �left and �right as they are given by the system’s left
and right boundary, respectively. If either one or both of
these boundary densities are not stable, perturbations
change these densities and �left and �right are given
by the first stable density which is determined by vcollð�Þ¼
0. The shock velocity vshockð�left; �rightÞ ¼ ½Jð�leftÞ �
Jð�rightÞ�=ð�left � �rightÞ determines the direction in which
a virtual domain wall between the densities at the left and
the right, �left and �right, moves and thereby which of these
densities is realized in bulk. In more detail, for vshock > 0
the left density, �left, dictates the bulk density, while for
vshock < 0 the right density, �right, is realized. In our model
particles are transported to the right and therefore jams
spread from right to left. Hence, the virtual domain wall
arises at the right boundary and the tip densities �leftþ and

�
right
þ determine vshock; see the Supporting Material [38].
Because of particle conservation at the plus end of the

MT, @t�þ ¼ Jð�b; �þÞ � �þ�, the stationary value of the
bulk and tip density are related through

�þ� ¼ Jð�b; �þÞ: (3)

This implies that the values of these densities as well as the
nature of the ensuing nonequilibrium steady state are
strongly interlinked. In general, one expects three phases
[35,39]: the steady state may either be dominated by the
motor densities at the plus end (EX phase) and the minus
end (IN phase), respectively, or by the transport capacity
(maximal current) of the lattice itself (MC phase). We first
consider the IN phase where �IN

b ¼ �� holds, and Eq. (3)

leads to the tip density

�INþ ð��Þ ¼ ��ð1� �� � �Þ=½�ð1� ��Þ�: (4)

This solution is stable against perturbations only if
the collective velocity vcollð��Þ ¼ @�J½�; �INþ ð�Þ�j�¼�� is

positive, which holds for reservoir densities smaller than
the bulk density in the MC phase �MC

b ¼ 1� ffiffiffiffi
�

p
. If the

reservoir density exceeds this value, the ECP implies that
the tip density becomes constant and independent of the
reservoir density �MCþ ¼ ð1� ffiffiffiffi

�
p Þ2=�. For the EX phase,

the right boundary determines the bulk density �EX
b ¼ �EXþ ,

and Eq. (3) leads to �EXþ ¼ 1� �=ð1� �Þ. According to

the ECP, this solution is stable if the corresponding collec-
tive velocity vcollð�EXþ Þ ¼ @�Jð�; �EXþ Þj�¼�EX

þ
is negative.

Since in the relevant parameter regime vcoll < 0 is always

fulfilled, the density �EXþ is always stable and �right
þ ¼ �EXþ

holds.
In summary, we have found the following results for the

densities at the left and right boundary of the MT:

�leftþ ¼ Min½�INþ ; �MCþ �; �right
þ ¼ �EXþ : (5)

With these expressions at hand, we can now map out the
phase diagram upon evaluating the shock velocity

vshockð�leftþ ; �right
þ Þ; cf. Fig. 2. The IN-phase is determined

by � < ð1� ��Þ2 and � > ��. Importantly, it is the only
phase in which the tip density is a function of ��; see
Eq. (4). As �� corresponds to the spatially varying density
profile ��ðxÞ in the full model, length regulation is feasible
in this range of parameters. In contrast, in the EX phase
[� < ð1� �Þ2 and � < ��] and the MC phase [� > ð1�
�Þ2 and � > ð1� ��Þ2] neither the tip nor the bulk den-
sities depend on ��. To confirm these and the following
analytic results, we performed extensive stochastic simu-
lations employing the Gillespie algorithm [40]. For both
the simplified and the full model discussed in the follow-
ing, calculations are in excellent agreement with simula-
tions; cf. Figs. 2(c) and 3.
Moreover, upon combining the results for the tip den-

sities in the various phases with the critical density �cþ ¼
�=�, we are able to calculate the critical growth rate �c, at
which the MT length becomes stationary

�cð��Þ ¼

8
>><

>>:

�ð1� �Þ EX phase;

��ð1� ��Þ IN phase;

1=4 MC phase:

(6)

For �> �c the lattice grows to infinity, while it shrinks
indefinitely for �< �c.
Up to now, the discussion was restricted to a simplified

system, and we have learned how a constant reservoir
density translates into the tip density and in which parame-
ter regimes the MT grows and shrinks, respectively. In the
following we transfer the so-far obtained results to the full
spatial model, in which the reservoir density is replaced by
the density profile: �� ! ��ðxÞ. This implies that also the
tip density becomes length dependent, �þ ! �þðLÞ in the
IN phase, see Eq. (4). Let us first consider how these spatial
density profiles affect the critical growth rate, �c, in the full
model, and thereby derive a condition for the parameter
regime where length regulation is feasible: Growth is un-
bounded only if the highest accumulated density ��ðLÞ
does not result in strong enough depolymerization dynam-
ics to overcome MT growth due to polymerization. Recall
that the accumulated density profile increases from left to
right until it saturates to the Langmuir density, �La. Thus,
growth is unbounded if � > �cð�LaÞ. In contrast, in the
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depolymerizing regime, � < �cð�LaÞ, the MT shortens
until the tip enters the antenna profile. Within this regime,
the accumulated density and thereby the tip density de-
creases with every depolymerization event until the MT
length reaches a stable fixed point L�, at which growth and
shrinkage balance each other. As the corresponding restor-
ing force is conservative, the length regulation dynamics
can be described by a potentialU. It follows from�@LU ¼
���þðLÞ þ � and leads to an adjusted length fluctuating
around the mean, as observed in the MT dynamics; see
Fig. 3(a).

To calculate the adjusted MT length L�, the full spatial
density profile ��ðxÞ as obtained from mean-field theory
[24], and the stochastic growth and shrinkage have to be
considered. They can be combined in an effective master
equation, where the degrees of freedom from the occupa-
tion numbers, ni, are adiabatically eliminated:

@tP ðLÞ ¼ ½ðEþ � 1Þ��þðLÞ þ ðE� � 1Þ��P ðLÞ: (7)

Here, E� are step operators which increase or decrease the
lattice length; �þðLÞ is the density at the tip depending on
L. In the IN phase, in which regulation is feasible,
�þðLÞ ¼ ��ðLÞ½1� ��ðLÞ � ��=½�ð1� ��ðLÞÞ� holds,
where ��ðxÞ is the spatial density profile given by
Lambert W functions [15,24]. We solve the master equa-
tion approximately using the van Kampen system size
expansion [41]: The deterministic dynamics ‘ðtÞ is sepa-
rated from the fluctuations � employing the ansatz L ¼
�‘ðtÞ þ ffiffiffiffiffi

�
p

�. As expansion parameter we consider � ¼
1=!a because the typical length scale of the accumulated
density profile which triggers length regulation is given by
1=!a. Additionally, time has to be rescaled according to
� ¼ !at since the equilibration time also scales with this

length scale. An expansion of Eq. (7) in terms of 1=
ffiffiffiffiffi
�

p
yields the mean MT length

L� ¼ �La

!a

ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p þ K � 1

K þ 1

� lnj ðK þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p þ K � 1

2K
jÞ: (8)

As can be inferred from Fig. 3(b), this result is in excellent
agreement with numerical data. We observe that the sta-
tionary MT length is independent of �, and a monotoni-
cally decreasing function of the binding constant K. The
latter behavior reflects the increase of the slope of the
antenna profile with larger K implying that the density at
which regulation arises is reached for shorter MTs. The van
Kampen approximation also gives the variance,

�2 ¼ 2�2

!a

K

�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p þ 2�ð1þ KÞ : (9)

For small values of �, the standard deviation � is below
10% of the filament length in a range of approximately
1–20 �m. The variance actually diverges with � !
�Lað1� �LaÞ for K � 1, while for K > 1 regulation re-
mains possible for � ¼ �Lað1� �LaÞ. In this regime, the
MT length distribution P ðLÞ develops an exponential tail.
This tail cannot be described by the van Kampen expan-
sion, which explains the deviations between the numerical
and the analytical results in Fig. 3(c).
In this Letter, we investigated how motor-induced depo-

lymerization in combination with spontaneous polymer-
ization can result in length regulation of biological
filaments. We found a broad parameter regime in which
length regulation is feasible, due to collective phenomena
of molecular motors which also act as depolymerases.
Even though the regime where length regulation is possible
depends on the depolymerization rate, the adjusted fila-
ment length is independent of the depolymerization rate �,
because of microscopic traffic jams forming at the tip. Our
model provides a proof of principle that spatial depen-
dences in the growth and shrinkage rates of filaments,
which arise from motor transport in this case, can result
in a well-defined filament length. It may serve as a basis for
mechanistically more detailed analyses which account for
multiple protein species [42], dynamic instability [43,44],
internal states of MTs or motors [45], assemblies of MTs
[46], or the abundance of molecules in the cell [47]. We
expect, however, that the main idea—feedback between
polymerization dynamics and collective motor dynam-
ics—remains the core mechanism.

FIG. 3 (color online). (a) Kymograph (upper left): Molecular motors (green shaded traces) accumulate along the lattice (gray)
resulting in a steady MT length (dashed). Corresponding potential UðLÞ (bottom left) and length distribution P ðLÞ (right) for K ¼ 1:5.
(b) Analytical [lines, Eq. (8)] and numerical results (symbols) for the typical MT length L� are compared. (c) Standard deviation of the
MT length � in units of its typical length L� for the same values for � as in (b). Inset: P ðLÞ for � ¼ 1=4 shows an exponential tail.
[Parameters: � ¼ 0:5 (a)–(c), !d ¼ 2� 10�4 (a), and !d ¼ 1� 10�3 (b),(c)].
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J. P. Straley, J. Phys. A 31, 6911 (1998).
[37] V. Popkov and G.M. Schütz, Europhys. Lett. 48, 257
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[46] O. Campàs, J. Casademunt, and I. Pagonabarraga,

Europhys. Lett. 81, 48003 (2008).
[47] C. A. Brackley, M. C. Romano, C. Grebogi, and M. Thiel,

Phys. Rev. Lett. 105, 078102 (2010).

PRL 108, 258104 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

258104-5

http://dx.doi.org/10.1038/312237a0
http://dx.doi.org/10.1038/312237a0
http://dx.doi.org/10.1146/annurev-cellbio-100109-104006
http://dx.doi.org/10.1146/annurev-cellbio-100109-104006
http://dx.doi.org/10.1016/j.cub.2009.07.028
http://dx.doi.org/10.1016/j.cub.2009.07.028
http://dx.doi.org/10.1016/j.ceb.2004.12.003
http://dx.doi.org/10.1016/j.ceb.2006.12.009
http://dx.doi.org/10.1016/j.cub.2005.09.054
http://dx.doi.org/10.1038/ncb1457
http://dx.doi.org/10.1016/j.cub.2007.02.036
http://dx.doi.org/10.1016/j.devcel.2007.11.014
http://dx.doi.org/10.1038/msb.2009.5
http://dx.doi.org/10.1038/ncb1462
http://dx.doi.org/10.1016/j.cell.2009.07.032
http://dx.doi.org/10.1016/j.cell.2011.10.037
http://dx.doi.org/10.1016/j.cub.2009.12.049
http://dx.doi.org/10.1016/j.cub.2009.12.049
http://dx.doi.org/10.1016/j.molcel.2011.06.027
http://dx.doi.org/10.1016/j.cub.2011.08.005
http://dx.doi.org/10.1016/j.cub.2011.08.005
http://dx.doi.org/10.1016/j.cell.2010.06.033
http://dx.doi.org/10.1016/j.cell.2010.06.033
http://dx.doi.org/10.1103/PhysRevLett.70.1347
http://dx.doi.org/10.1103/PhysRevLett.70.1347
http://dx.doi.org/10.1016/j.bpj.2011.09.009
http://dx.doi.org/10.1016/j.bpj.2011.09.009
http://dx.doi.org/10.1209/0295-5075/83/40006
http://dx.doi.org/10.1016/j.bpj.2010.05.026
http://dx.doi.org/10.1016/j.bpj.2010.05.026
http://dx.doi.org/10.1088/1478-3975/6/4/046016
http://dx.doi.org/10.1088/1742-5468/2007/11/P11013
http://dx.doi.org/10.1088/1742-5468/2007/11/P11013
http://dx.doi.org/10.1103/PhysRevE.75.031909
http://dx.doi.org/10.1209/0295-5075/96/28001
http://dx.doi.org/10.1146/annurev.cellbio.13.1.83
http://dx.doi.org/10.1146/annurev.cellbio.13.1.83
http://dx.doi.org/10.1016/j.cell.2007.11.043
http://dx.doi.org/10.1103/PhysRevLett.87.108101
http://dx.doi.org/10.1103/PhysRevLett.87.108101
http://dx.doi.org/10.1023/A:1025778922620
http://dx.doi.org/10.1103/PhysRevLett.90.086601
http://dx.doi.org/10.1103/PhysRevLett.90.086601
http://dx.doi.org/10.1103/PhysRevE.70.046101
http://dx.doi.org/10.1083/jcb.121.5.1083
http://dx.doi.org/10.1083/jcb.121.5.1083
http://dx.doi.org/10.1006/jmbi.2001.5020
http://dx.doi.org/10.1006/jmbi.2001.5020
http://dx.doi.org/10.1016/j.bpj.2009.01.017
http://dx.doi.org/10.1073/pnas.1107281109
http://dx.doi.org/10.1073/pnas.1107281109
http://dx.doi.org/10.1088/0034-4885/74/11/116601
http://dx.doi.org/10.1088/0034-4885/74/11/116601
http://dx.doi.org/10.1103/PhysRevE.74.031906
http://dx.doi.org/10.1103/PhysRevE.74.031906
http://dx.doi.org/10.1103/PhysRevE.76.031135
http://dx.doi.org/10.1103/PhysRevE.76.031135
http://dx.doi.org/10.1103/PhysRevLett.67.1882
http://dx.doi.org/10.1088/0305-4470/31/33/003
http://dx.doi.org/10.1209/epl/i1999-00474-0
http://dx.doi.org/10.1209/epl/i1999-00474-0
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.258104
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.258104
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1007/BF01048050
http://dx.doi.org/10.1007/BF01048050
http://dx.doi.org/10.1088/0305-4470/26/7/011
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1103/PhysRevE.82.040901
http://dx.doi.org/10.1103/PhysRevE.82.040901
http://dx.doi.org/10.1073/pnas.0910774106
http://dx.doi.org/10.1073/pnas.0910774106
http://dx.doi.org/10.1016/j.bpj.2011.12.059
http://dx.doi.org/10.1103/PhysRevLett.95.118101
http://dx.doi.org/10.1209/0295-5075/81/48003
http://dx.doi.org/10.1103/PhysRevLett.105.078102

