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For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are
inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends.
We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the
length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length
distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution
is determined only by the attachment rate of motors. Our results show how established molecular
processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.
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Cytoskeletal filaments, notably F-actin and microtu-
bules, take an important part in determining the mechani-
cal properties and internal organization of cells [1].
These biopolymers are considered to be “active’ as their
assembly depends on the hydrolysis of nucleotide tri-
phosphates, which can generate interesting nonequilib-
rium behavior. For example, length changes in response
to variations in the microenvironment are faster for active
filaments than for equilibrium polymers [2]. Furthermore,
cytoskeletal filaments can treadmill such that subunits are
on average added at one end and removed from the other
[3-5]. This phenomenon relies on structural differences
between the two ends, which are referred to as the
“plus” and the “minus” end, respectively. In striking
contrast to passive polymers, treadmilling filaments can
display unimodal length distributions [6]. This might be
physiologically relevant for muscle sarcomeres [7] or
mitotic spindles [8], where filament lengths are tightly
regulated.

Microtubule length regulation in mitotic spindles nota-
bly involves molecular motors of the kinesin superfamily
[1]. These enzymes can convert chemical energy into
directed motion along microtubules. At the same time,
some kinesin motors induce the removal of tubulin sub-
units at microtubule ends [9,10]. In this way, effectively
length-dependent depolymerization rates can be gener-
ated [11-14], which regulate the length of individual
microtubules.

In addition to their biological relevance, molecular
motors have become a paradigm for studying transport
phenomena. They have notably motivated the study of
one-dimensional lattice models like the Totally
Asymmetric Simple Exclusion Process (TASEP) [15-18]
and revealed a number of genuine nonequilibrium phe-
nomena. In the TASEP, particles enter the lattice at one
end. Unless hindered by steric interactions with other
particles they hop towards the opposing end, where they
eventually leave the lattice. In this model, boundary-
induced phase transitions have been found [19]. If motors

0031-9007/12/108(25)/258103(5)

258103-1

PACS numbers: 87.16.Ka, 05.40.—a, 87.10.Hk, 87.16.Nn

can enter and leave the system anywhere along the lattice,
pinned domain walls can emerge [20].

Few works have so far considered the interplay between
the nonequilibrium dynamics of motors and filaments. It
was shown that motors transporting filament nucleators are
capable of organizing an ensemble of active filaments into
asters and waves [21-23] and of polarizing a dynamic
filament network [24,25]. Furthermore, treadmilling sta-
bilizes contractile bundles of filaments and motors [26] and
dynamic filaments typically prevent the formation of motor
jams [27,28].

Motivated by minus-end directed kinesins, we study in
this work the effects of molecular motors on the length
distribution of treadmilling filaments. In vitro experiments
showed that the motor Kar3p increases the depolymeriza-
tion rate at the minus ends of treadmilling microtubules
[29,30]. The motor KLP10A is involved in spindle-length
regulation in the fruit fly Drosophila melanogaster.
Observations of spindles in vivo strongly suggest that
also this motor increases subunit removal at microtubule
minus ends [31]. Using a one-dimensional driven lattice
gas, we find that increased motor hopping typically
sharpens unimodal length distributions. Remarkably, for
motors moving sufficiently fast the length distribution is
completely determined by the motor attachment rate.

Consider a dynamic lattice, where individual sites rep-
resent subunits of the filament; see Fig. 1(a). The plus end
is located at site i = 1, while the minus end is at i = L.
Molecular motors are represented by point particles on the
lattice. As in the TASEP, a particle on site i can hop at rate
v to site i + 1 provided that the latter is empty. In addition,
motors attach to empty sites at rate w and detach from
occupied sites at rate @. Empty sites are added to the plus
end at rate «v. Occupied sites are removed together with the
bound motor from the minus end at rate 8. The case of
subunit removal from the plus end is discussed in the
companion Letter, Ref. [32]. For L = 1 the only remaining
site cannot be removed. In the following, we rescale all
rates by a. If B is below a critical value S, the filament
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FIG. 1 (color online). Motor-induced shortening of an active
biopolymer. (a) [llustration of the model: Empty sites are added
at the plus end at rate « and occupied sites are removed from the
lattice at the minus end at rate . Particles bind to empty sites at
rate w and hop at rate vy to empty sites towards the minus end. In
the following, all rates are scaled by «. (b) Examples of the
steady-state dynamics with 8 = 10, w = 0.01, and y = 0 (left)
and y = 2 (right). Empty sites are shown in blue, occupied sites
in red.

length will diverge. We will limit ourselves to the case
@ = 0, such that 8. = 1 independently of y and @ and
consider only 8 > 1. For @ > 0, B, can diverge, in which
case no steady state exists. As long as 8 > .., though, the
system behavior does not depend qualitatively on &.
Stochastic simulations show that the system length fluc-
tuates around a well-defined mean value, see Fig. 1(b). The
corresponding length distributions are unimodal with

FIG. 2 (color online). Effects of the motor hopping rate y on
the length distribution. (a) Steady-state length distributions for
various values of y, 8 = 10, and w = 0.01. (b) Average occu-
pation probability of lattice sites. Symbols as in (a). Red dashed
lines represent the solution of Eq. (1), while full black lines are
given by Eq. (2). Gray lines indicate the slope w/(1 + y) at
i = 1; see text. Values are shown for every tenth data point.

decreasing average length and width for increasing hop-
ping rate y; see Fig. 2(a).

Qualitatively, this behavior can be easily understood:
We start by noting that the average probability for a site
to be occupied increases monotonically with its distance to
the plus end; see Fig. 2(b). This is because new sites that
are added at the plus end are initially empty. Consequently,
the probability of having an occupied site at the minus end
and thus the effective detachment rate increase with the
system length. Since the probability of finding an occupied
site approaches 1 as its distance to the plus end increases,
there must be a critical length below which the system
tends to grow, while otherwise it shrinks on average. With
increasing values of v the time during which the minus end
is empty decreases and fluctuations in the rate of subunit
removal are reduced; see Fig. 1(b). This leads to smaller
averages and sharper length distributions.

To study the quality of motor-induced length regulation,
we present in Fig. 3 the relative width Q = o/(L), where
(L) is the average length and o> = (L?) — (L)* the corre-
sponding variance, as a function of 8 and 7y. Except for a
tiny region at 8 = 1, the value of Q decreases with in-
creasing y. An increased motor activity will thus typically
lead to a better defined length distribution. Note, however,
that for y = 1, the value of Q quickly approaches 0.1.
As we will show below, in general, the saturation value is
0 =+o(l + w).

We will now discuss the length distribution in more
detail. To this end, we first analyze the motor distribution
for a semi-infinite filament (8 = 0). Let n;(r) = 0,1 be
the occupation number of site i at time ¢ and consider the
average occupation number 0 < p; = (n;) = 1. As the
value of 7 is increased, the profile develops a region of
increasing steepness which in the limit y — oo turns into a
“shock” separating a domain of empty sites from a domain
of occupied sites [20,27,33].

To calculate the average occupation number of site i in
steady state, we use a mean-field approximation,
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FIG. 3 (color). Relative width Q of the length distribution as a

function of the motor hopping rate vy and the removal rate 8 for
o = 0.01. White lines connect loci of equal average length.
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(n;n;41) = p;pi+1» such that the time evolution of the
mean-field density p™ is given by

pit = w(l = p") + yp, (1 = p") = yp"(1 = p}Y
+ oy — o ey

for i > 1 with boundary condition p™ = w(1 — p) —
yp™ (1 — pf) — p™t. The terms on the right-hand side
account for attachment of motors to empty sites, particle
hopping and addition of sites to the plus end, respectively.
In steady state, p™ can be obtained recursively for i > 1
with p™ being determined by the flux-balance condition
w¥2 (1 — p™)=1. This condition reflects that, in
steady state, the total rate of motor attachment must equal
the rate of site addition at the plus end.

The above approach neglects correlations in addition to
those between the occupation numbers of neighboring
sites. This is because the time 7 having passed since site
i has been incorporated into the system is a stochastic
variable. Similar to the TASEP, the former are negligible
[17,18], while the latter give an important contribution.
The probability distribution of times T is given by p;(T) =
T 'e~T/(i — 1)!, because i — 1 new sites were added at
rate 1 since site i has joined the lattice. Assuming that the
occupation probability of site i at age T is p’f, we then get

pi=> p™pi(j) 2)
j=1

The motor profile obtained in this way is in very good
agreement with the simulation results; see Fig. 2(b).

Below we make use of a continuum approximation p(x)
for the motor density, where we use p;+; = p(x) =
dp(x)/dx. For y <1, the solution of the corresponding
steady-state equations with p(0) = 0 is given by wx =
2yp + (y — 1)In(1 — p). For -y > 1 this continuum solu-
tion has a discontinuity at the shock position x, and the
density is well described by the linear profile py,(x) =
wx/(1 + y)ifx <x,and p = 1if x > x,. x, is determined
by the flux-balance condition, which now reads
o [or(1 = pn(x)dx = 1.

We will now turn to the system’s length distribution P
in steady state. We can write the time evolution in the form

Pp=jL = Jjr+1 (3
where j; . is the probability current from a state of length
L to a state of length L + 1, together with the boundary
condition j; = 0. In steady state, P, = 0 and we have
jro =0forall L =1,2,... The contribution to the current
jr due to the addition of subunits at the plus end is Py.
Accounting for subunit removal at the minus end is much
more involved as it depends on the motor distribution in the
system. In the following, we propose an approximate ex-
pression for the current j; .

To calculate the rate at which the site at the minus end is
removed from the system, we will again neglect correla-

tions between neighboring sites, but retain the stochasticity
of the sites’ ages. Consider a system of length L and let €
be the length at which the current last site had reached the
minus end. Furthermore, the time 7 indicates the time span
that has passed since this event. The probability that site L
is empty will be denoted by po(L, £, 7), while p,(L, {, 7)
denotes the probability that it is occupied. Finally,
p(L, €, 7) is the probability that this site was removed
prior to the time 7. We have py + p; + p, = 1. If p, is
known, then 9, p, is the rate at which the site is removed at
time 7 after it has become the minus end. For a system of
length L, the average removal rate of subunits that have
become the minus end as the system had length ¢ is then

L=t
Ber = [dTm e 79, p(L, € 7). 4)
The sum over all these rates weighted by the probability
that the system has length € finally gives the contribution of
removal events to the probability current. Consequently,
the steady-state condition reads

L+1
Jo="PL — Ber+1Pe=0. (%)
=1
It remains to determine 9,p, = —9d,(py + p1). The

probabilities po(L, €, 7) and p,(L, €, 7) evolve according to

ﬁ(po) _ (—w ~YPe-1+r O )(m) ©)
T\ P o+ Ype1+: —B/\pP1/

This equation accounts for the occupation of sites by motor
attachment and motor hopping as well as removal of
occupied sites, but neglects correlations between the last
and the second but last site. We choose as initial conditions
poll, 6, 7=0=1—p, and p(L, ¢ 7=0)=p,.
Eqgs. (3)—(6) specify a nonlocal, but Markovian jump pro-
cess for the system length.

The steady-state solution of this jump process can be
given analytically, however, the expressions are cumber-
some and not very revealing. In Fig. 4 we plot the resulting
average length (L) and standard deviation o as a function
of B for various values of y and w. In these calculations,
we have used the motor distribution obtained in the con-
tinuum limit. For y = 0 the solution of the jump process is
identical to the simulation results. In contrast to the motor
distribution discussed above, for y > 0, correlations be-
tween adjacent sites now become important and lead to
increasing deviations from the numerical results as y/w
increases.

We can gain complementary insights for large hopping
rates y by analyzing the limit y — oo. In this limit, the
length dynamics is described by a two-dimensional ran-
dom walk. Indeed, the system is in this case divided into an
empty region I of length M starting at the plus end and a
fully occupied region Il of length N = L — M extending to
the minus end. The probability P, y evolves according to
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FIG. 4. Mean length and variance of length distribution as a
function of the removal rate § for different values of the hopping
rate y (a),(c) and of the motor attachment rate w (b),(d).
Symbols represent simulation results, full lines are given by
Egs. (8) and (9) for (L) and o, respectively. Dashed lines are
obtained from solutions of the jump process defined by
Egs. (4)—(6). In (a),(c) @ =0.01 and y =0 (X), 0.5 (AQ),
1 @), 2 (), 10° (O); in (b),(d) ¥y =2 and w = 0.005 (V),
0.01 (O), 0.05 (<), 0.1 (O).

Pyn =Pyu-1n — Pun + B(Pyn+1 — Pun)
+ o((M + 1)Ppsy n—1 — MPyy)) )

for M, N > 1. The system is complemented by no-flux
boundary conditions for M, N = 1.

We now consider the marginal distributions for M and N
separately. The steady-state equation for the distribution
of M, P}, = ¥'%_, Py v, only depends on P},. Its solution
is given by P, = % exp(— ). To calculate the steady-
state distribution of N, we make a mean-field assumption
and write Y5 _oMPy y = (M)PY, which gives P =
(B—1)BN*l. Consequently, we obtain (L), =
My+{Ny=o '+ (B-1"" and o%=w1+
B%(B — 1)~2. Comparison of {L)., and o, with numerical
data shows good agreement; see Fig. 4. In the limit 8 — oo

they yield Q = y/w(1 + ) as announced above.
These considerations can be extended to values of

v < oo by assuming that there is still a fully occupied
domain, while the second domain is now partially filled.
The shock position x; still describes a random walk with an
effective hopping rate to the left that is given by
the quotient of the motor current to the site i = M,
vp(M —1)(1 — p(M)), and the shock height 1 — p(M)
[33,34]. We approximate the motor distribution in the
partially occupied domain by a linear profile and use py;,.
Again, we make a mean-field assumption and consider the
two domains to be independent of each other. In first order
in y~! we then get

1
(L)y = L)oo + —, ®)
Y
0%, =g + i 9)
020

As we have seen above correlations for y # 0 are in
general important. We estimate the correction to the vari-
ance due to correlations to be of the same order as the
correction to the variance if both processes were uncorre-
lated. This explains the factor 2 in the correction term to
0. The agreement is satisfying for y > 1; see Fig. 4.

In conclusion, we have shown that the activity of mo-
lecular motors can sharpen the length distribution of tread-
milling filaments. Furthermore, we have found that the
presence of motors makes the filament length distribution
robust against variations in system parameters as long as
the motors are faster than the average filament growth
velocity. In this regime the filament length essentially
depends only on the motor attachment rate. A quantitative
model of motor-induced microtubule length regulation
should take into account several additional features: the
state of the nucleotides bound to tubulin subunits, addition
of subunits at the minus- and removal at the plus end, and
the presence of several protofilaments in a microtubule. We
expect, however, that our findings will cum grano salis be
unaffected by these changes.
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