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We propose a set of spin system wave functions that is very similar to lattice versions of the Laughlin

states. The wave functions are conformal blocks of conformal field theories and for a filling factor of

� ¼ 1=2 we provide a parent Hamiltonian, which is valid for any even number of spins and is at the same

time a 2D generalization of the Haldane-Shastry model. We also demonstrate that the Kalmeyer-Laughlin

state is reproduced as a particular case of this model. Finally, we discuss various properties of the spin

states and point out several analogies to known results for the Laughlin states.
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Phenomena in strongly correlated systems are generally
hard to understand and describe, and therefore, simple
model systems exhibiting various behaviors are important
guides. Laughlin’s wave functions [1]
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e.g., have played a key role in explaining the fractional
quantum Hall effect, and this has triggered interest in
understanding the nature of these states in depth. [The
complex numbers Zn are the positions of the particles in
the complex plane, � is the Landau level filling factor, and
the product of the single-particle phase factors ~�ðZnÞ is the
gauge factor.] Finding parent Hamiltonians for wave func-
tions is also very useful because it tells us how the behavior
described by the wave function can be associated to the
interactions between the particles in the system, and it can
guide us to find experimental situations where such a
behavior occurs, even if the Hamiltonian itself cannot be
implemented directly.

In 1987, Kalmeyer and Laughlin (KL) introduced the
� ¼ 1=2 bosonic Laughlin state on a square lattice [2].
Such models are expected to play a crucial role in under-
standing topological phases of lattice systems, in very
much the same way as Laughlin states do in bulk.
Furthermore, they may open up the door [3] for the experi-
mental realization and investigation of Laughlin-like states
under very well-controlled conditions in optical lattices.
The KL state has been further investigated in [4,5], but it
has been a long-standing problem to find a parent
Hamiltonian for the state. Within the last few years,
Hamiltonians have been found that are exact in the ther-
modynamic limit [6–8]. In this Letter, we take a different
approach in which we propose to slightly modify the
Laughlin states. The modification enables us to find a rela-
tively simple Hamiltonian, containing only two- and three-
body interactions, which is exact also for finite systems and
arbitrary lattices. We demonstrate that the modified states

are very close to the original Laughlin lattice states for finite
systems, while they are exactly the same in the limit of an
infinite square lattice.
As in the spirit of [9], the wave functions we propose are

chiral correlators of conformal blocks. The key element in
the derivation of the Hamiltonian is to exploit that this
structure allows us to apply rules from conformal field
theory (CFT). Using the properties of null fields in CFT,
we have recently derived [10] nonuniform and higher spin
generalizations of the 1D Haldane-Shastry (HS) model
[11,12], and in this Letter, we extend these results further
to obtain a generalization of the HS model to 2D. Previous
work on finding parent Hamiltonians for the KL state on an
infinite lattice has in part been inspired by the original HS
model. Here, we complete this idea by demonstrating that
the HS state and the KL state are in fact two limiting cases
of the same model.
In addition, we characterize the most important

physical properties of the modified states, including
correlation functions, topological entanglement entropies
(EEs), and entanglement spectra. It has been noted numeri-
cally that for some fractional quantum Hall states, the
entanglement spectrum corresponds to the spectrum of
the CFT that defines the wave function on the boundary
[13]. Utilizing the particular structure of the proposed
wave functions, we are here able to show analytically
that the entanglement spectrum for a two-legged ladder
(as defined in [14]) exactly corresponds to the 1D CFTwith
central charge c ¼ 1 for � ¼ 1=2, and we trace this back to
the fact that the Yangian symmetry is inherited at the
boundary.
Wave function.—The wave functions we propose de-

scribe the state of N spin 1=2 particles at positions
z1; . . . ; zN in the complex plane, where N is even. They
are chiral correlators of products of vertex operators

�snðznÞ ¼: ei
ffiffiffi
�

p
sn’ðznÞ: [15], where : . . . : means normal

ordering, � is a positive parameter, sn ¼ �1 is twice the
z component of the nth spin, and ’ðznÞ is the field of a free
mass-less boson, i.e., [15],
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Here, �s ¼ 1 for
P

nsn ¼ 0 and �s ¼ 0 otherwise, and the
phase factors �p;sp can be chosen at will, since the chiral

correlator is only defined up to a phase. For � ¼ 1=2, we
shall always choose �p;sp ¼ exp½i�ðp� 1Þðsp þ 1Þ=2�,
since this ensures that (2) is a singlet [16].

For � ¼ 1=4, we note that (2) can be written (up to an
overall phase) as a Slater determinant of the single-particle
wave functions c kðznÞ ¼ zk�1

n ð�n;1=�n;�1Þ
Q

mð�nÞ�
ðzn � zmÞ�1=2, k ¼ 1; 2; . . . ; N=2. [We use the convention
that

Q
n�m is the product over m and n, whereas

Q
mð�nÞ is

the product only over m.] The states c kðznÞ are not ortho-
normal, but can be made so without changing the Slater
determinant. We can therefore regard (2) as the state of
N=2 noninteracting fermions. This simplification enables
us to use exact numerical computations rather than
Monte Carlo simulations for � ¼ 1=4 when we compute
properties of the wave functions below. The � ¼ 1
Laughlin state can also be written as a Slater determinant,
and indeed we shall see in a moment that � ¼ 1=4 corre-
sponds to � ¼ 1.

Connection to the Laughlin states.—We next investigate
the statement that (2) is similar to lattice versions of the
Laughlin states, which are in turn closely related to the
continuous Laughlin states. We expect the correspondence
to be approximately valid for all lattice configurations for
which the distribution of the lattice points is not too far
from uniform and also if the complex plane is mapped into
other geometries. We shall here consider the case of a
(finite) square lattice in the complex plane since it is
mathematically convenient and the case of an approxi-
mately uniform distribution on the sphere because this
geometry eliminates all boundaries.

It has been speculated in [17] that the KL state is
proportional to the conformal block in (2) with � ¼ 1=2
on an infinite square lattice. Here, we proof explicitly in the
Supplemental Material [16] for the case of a 2M� 2M
square lattice centered at the origin and with lattice con-

stant b ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
that the ratio between (2) with appropri-

ately chosen �p;sp and (1) with � ¼ ð4�Þ�1 is given by

Y4M2

n¼1

jfMðznÞ=f1ðznÞj�ð1þsnÞ (3)

up to an irrelevant overall factor, where fMðznÞ � ðzn=bÞ�Q
4M2

mð�nÞð1� zn=zmÞ�1. In particular, the two wave func-

tions coincide forM ! 1. In brief, we prove this result by
transforming the spins into hard-core bosons by writing
sn ¼ 2qn � 1, qn 2 f0; 1g. This allows us to express (2) in
terms of fMðznÞ. We then take the limit M ! 1, compute
f1ðznÞ by algebraic methods, and compare the result to (1).

We note that the correct density of particles is obtained by
scaling the lattice constant rather than by changing the
filling factor of the lattice. As a consequence, the lattice
filling factor, which is always 1=2, only coincides with the
Landau level filling factor � for � ¼ 1=2. Figure 1(a)
demonstrates that jfMðzÞj � jf1ðzÞj already for a 10� 10
lattice, and thus there is a close relationship between Eqs.
(1) and (2) even for small systems.
The model can be mapped from the complex plane to the

unit sphere with polar angle � and azimuthal angle � by

the stereographic projection z ¼ v=u, where u ¼
cosð�=2Þei�=2 and v ¼ sinð�=2Þe�i�=2. A small computa-
tion shows that �ij � ðviuj � uivjÞ�1 and also the wave

function (2) are invariant under SUð2Þ transformations of
the pair (u, v). Note that dij ¼ 2j�ijj�1 is the shortest

distance dij ¼ jni � njj between spin i and spin j, where

ni � ð sinð�iÞ cosð�iÞ; sinð�iÞ sinð�iÞ; cosð�iÞÞ is the posi-
tion vector of spin i. Writing sn ¼ 2qn � 1 as before, we
find that (2) is proportional to the Laughlin wave function

on the sphere
Q

N
n<m ��qnqm=�

nm [18] with � ¼ ð4�Þ�1 except

for an extra factor of
Q

n�m�
2�qn
nm . Figure 1(b) shows that

jQmð�nÞ�nmj varies only little with n for N ¼ 100, and so

the correspondence between the proposed wave functions
and the Laughlin states is again approximately valid [note

that the phase of
Q

mð�nÞ�
2�qn
nm can be absorbed in �n;sn].

Here, and in the following, we choose the distribution of the
spins on the sphere by minimizing

P
i<jd

�2
ij numerically.

Hamiltonian.—For � ¼ 1=2, the vertex operators can be
regarded as representations of spin 1=2 fields in the SUð2Þ1
Wess-Zumino-Witten (WZW) model. Using properties of
null fields in this model and the Ward identity, we derive
[16] a set of positive semidefinite and Hermitian operators

Hi ¼ 1

2

X

jð�iÞ
jwijj2 � 2i

3

X

j�kð�iÞ
�wijwikSi � ðSj � SkÞ

þ 2

3

X

jð�iÞ
jwijj2Si � Sj þ 2

3

X

j�kð�iÞ
�wijwikSj � Sk; (4)

i ¼ 1; . . . ; N, which annihilate the state (2). In (4), wij ¼
gðziÞ=ðzi � zjÞ þ hðziÞ, where g and h are arbitrary

FIG. 1. (a) Comparison between � ln½jf5ðzÞj� and
� ln½jf1ðzÞj� ¼ �jzj2=ð2b2Þ þ constant. The points almost fall
on a straight line with unit slope (solid line). (b) Plot of
jQmð�nÞ�nmj as a function of n for 100 spins on a sphere.
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functions of zi, and Si ¼ ðSxi ; Syi ; Szi Þ is the spin operator of
the ith spin. It follows that (2) is the ground state ofHi, and
thus also of H ¼ P

iHi=4þ ðN þ 1ÞPi;jSi � Sj=6.

We note that H reduces to the HS Hamiltonian [11,12]
when zn ¼ expð2�in=NÞ andwij ¼ 2zi=ðzi � zjÞ � 1, and

the construction is hence a generalization of the HS model
to 2D and nonuniform distributions of the spins. In [16], we
show that if the ground state is degenerate, then the addi-
tional ground states will not satisfy the Knizhnik-
Zamolodchikov (KZ) equation [19]. The KZ equation is
derived from the Sugawara construction that builds the
Virasoro generators in terms of the Kac-Moody currents.
So a degeneracy would indicate theories obeying the Kac–
Moody but not the Virasoro algebra. It would be surprising if
such theories exist, and we therefore expect the ground state
to be unique. Exact diagonalization of H for small systems
[see Fig. 2(a) for examples] also suggests uniqueness.

On the sphere, we can obtain a Hamiltonian, which is
invariant under SUð2Þ transformations of (u, v) by choos-

ing H ¼ P
ijuij�2½Hð1Þ

i þHð2Þ
i �, where Hð1Þ

i [Hð2Þ
i ] is (4)

with wij ¼ 1=ðzi � zjÞ [wij ¼ zi=ðzi � zjÞ]. Finally, we

note that a Hamiltonian for the case � ¼ 1=4 can be
constructed by summing single-particle Hamiltonians,
each of which is the identity minus the sum of the projec-
tions onto the orthonormalized single-particle states.

Properties.—To further demonstrate the closeness be-
tween (2) and the Laughlin states, we compute various
properties of (2) in the following. We note that all the
numerical results presented below except those related to
entanglement spectra are independent of �p;sp .

Spin-spin correlation function: Since the systems we
consider are too big for exact numerical computations,
we use the Metropolis Monte Carlo algorithm to compute
the spin-spin correlation function

hSziSzji ¼
P

s1;...;sN

sisjjc s1;...;sN ðz1; . . . ; zNÞj2

4
P

s1;...;sN

jc s1;...;sN ðz1; . . . ; zNÞj2
: (5)

For � ¼ 1=2, the state is SUð2Þ invariant and so hSai Sbj i ¼
�abhSzi Szji, a, b ¼ x, y, z. Figure 2(b) shows the average of

the spin–spin correlation function for 200 spins on the
sphere and � ¼ 1=2 as a function of the distance between
the spins. For a given d, the average is taken over all spin
pairs for which the distance dij between the spins falls

within the interval [d� 	, dþ 	], where 	 ¼ 0:005. As for
the Laughlin state with � ¼ 1=2, we observe antiferromag-
netic oscillations and exponential decay of the correlations.
The dependence of the spin-spin correlation function on

� is investigated in Fig. 3. Except for � close to 0.25, we
find that the correlator decays approximately as
expð�d=
Þ, where d is the distance between the spins
and 
 is the correlation length. Numerical estimates of

�1 are shown in Fig. 3(a). We also find that antiferromag-
netic oscillations occur above � ¼ 0:25, but not below.
This observation is consistent with the lack of oscillations
in the correlation function for the � ¼ 1 Laughlin state and
the presence of oscillations for filling factors below unity.
It is also consistent with the conjecture that the transition
occurs precisely at � ¼ 1 [20,21]. The transition is illus-
trated in plots (b)–(d). Finally, an analytical expression for
the correlation function of the continuous � ¼ 1 Laughlin
state on the sphere has been found in [22], and the figure
shows good agreement on intermediate length scales.
EE: The possibility of having quasiparticles with frac-

tional statistics is a very important aspect of the Laughlin
states, and it is therefore very relevant to check whether (2)
also has nontrivial topological properties. Here, we study
the EE, since this allows us to extract the total quantum
dimension D [23]. More precisely, if we divide a system

FIG. 2 (color online). (a) Low-lying part of the energy spec-
trum for a 2� 3 (þ ) and a 4� 3 (� ) square lattice centered at
the origin. (The horizontal axis shows the degeneracy.)
(b) Averaged spin–spin correlation function for 200 spins on
the sphere as a function of the distance between the spins. The
error bars are of order a few times 10�5, and so the results are
only converged for d & 1:2. The symbols encode the sign of the
correlations (plus for positive and circle for negative).

FIG. 3 (color online). (a) Inverse correlation length as a func-
tion of � for 100 spins on a sphere. (b–d) Averaged spin–spin
correlation function as a function of the distance between the
spins for (b) � ¼ 0:24, (c) � ¼ 0:25, and (d) � ¼ 0:26.
The error bars in (b) and (d) are of order 10�5 for all points,
while the results in (c) are exact. The solid curve in (c) is minus
the expression for the correlation function of the continuous
� ¼ 1 Laughlin state on the sphere found in [22].
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into two subsystems A and B and the system is gapped, the
EE has the form aP� �þ . . . [24], where a is a constant,
P is (proportional to) the length of the boundary between A
and B, �� is called the topological EE and fulfils � ¼
lnðDÞ [24,25], and the ellipsis stands for terms that vanish
for P ! 1. For Abelian systems, D2 is the number of
different quasiparticles one can get by fusing the funda-

mental quasiparticles in the system, and so D ¼ ffiffiffiffiffiffiffiffi
1=�

p
for

the Laughlin states with 1=� 2 N [23].
The linear increase of the EE with P is confirmed in

Fig. 4(a). We use here the Rényi entropy Sð2ÞL ¼
� ln½Trð�2

AÞ�, where �A is the reduced density operator
of the spins in region A, because this quantity can be
computed efficiently using Monte Carlo methods [26,27].
The boundary between A and B is assumed to be the circle
� ¼ �L, where �L is defined such that the area on the
sphere with � < �L relative to the complete area of the
sphere equals L=N. The length of the boundary is then

proportional to P � ðL=NÞ1=2ð1� L=NÞ1=2, and the steps
in the EE appear due to the discreteness of the positions of
the spins. For the Laughlin states, there are more ways in
which the system can naturally be divided into two parts,
and previous studies [28,29] have computed EEs for both
orbital partitioning, in which region A involves a subset of
angular momentum eigenstates, and particle partitioning,
in which a particular subset of the spins comprises part A of
the system. We note that such complications do not appear
here, since the spins are fixed at specific positions.

The topological EE cannot be read off reliably from
Fig. 4(a) because small errors in the linear term due to
irregularities in the boundary easily become dominant.
Instead, we use the method proposed in [24], which elim-
inates the linear term by considering a linear combination
of EEs of suitably chosen regions. The results in [24] are
for the von Neumann entropy, but it has been shown in [30]

that � ¼ lnðDÞ also holds for Sð2ÞL when region A is a
topologically trivial region. For � ¼ 1=4, we find � ¼ 0,
and for � ¼ 1=2, we get �� ¼ �0:341� 0:057 from a
Monte Carlo simulation involving 160 spins on a sphere.
Both results are consistent with the expected values [0 and

� lnð2Þ=2 � �0:347, respectively] and with the results
obtained for lattice models in [31].
Entanglement spectrum: It has turned out (typically

from numerical studies) that the low-lying part of the
entanglement spectrum, defined as the eigenvalues of
� lnð�AÞ, is often related to some theory on the boundary
of A [32]. Utilizing the particular structure of the wave
functions (2), we can here derive such a connection analyti-
cally for the case of � ¼ 1=2 and N spins distributed
uniformly on two rings in the complex plane; i.e., the spins
are at the positions exp½2�ð2in� �Þ=N�, where n ¼
1; 2; . . . ; N=2. Specifically, we prove in the Supplemental
Material [16] that �A (the reduced density operator of the
inner ring) is invariant under Yangian transformations,
which means that � lnð�AÞ is a linear combination of the
invariants in the HS model. More precisely, we can write
� lnð�AÞ as a linear combination of the identity H0, the
two-body operator H2 ¼ 2

P
n�mSn � Smznzm=z

2
nm, znm �

zn � zm, the three-body operator H3 ¼ �i
P

n�m�pSn �
ðSm � SpÞznzmzp=ðznmzmpzpnÞ, and operators with higher

body interactions, which we write as Hr [33]. Considering
these operators as normalized vectors jHii with inner

product hHijHji ¼ TrðHiHjÞ=½TrðH2
i ÞðH2

j Þ�1=2, we can

write

j � lnð�AÞi ¼ c0jH0i þ c2jH2i þ c3jH3i þ crjHri: (6)

The coefficients are given for N ¼ 12 in Fig. 4(b). We note
that the above results do not generalize to the case of more
than two rings.
Conclusion.—We have proposed a set of spin system

wave functions that is in many respects analogous to the
Laughlin states. The proposed mapping between spin states
and Laughlin states builds on CFT and demonstrates the
usefulness of CFT as a tool to gain insight into many-body
systems. We believe that similar mappings can be found
also for other quantum Hall states. In particular, one can
obtain spin analogies of the Moore–Read state by general-
izing the higher level 1D spin models proposed in [10] to
2D, which can be done straightforwardly.
The analogy between Laughlin states and spin states can

be carried even further since the method proposed in [9] to
incorporate quasiholes by introducing additional confor-
mal operators can also be used for the state (2). As for the
Laughlin states, one can interpret the square of the norm of
the spin wave function as a particular charge distribution,
and we expect this distribution to screen the quasiholes. It
follows immediately from the construction that the analytic
continuation properties of the wave functions are the same
as for the Laughlin states with quasiholes. It would be
interesting to investigate these ideas further.
The authors acknowledge discussions with N. Read.

This work has been supported by The Carlsberg
Foundation, the EU project QUEVADIS, and the Grants
No. FIS2009-11654 and QUITEMAD.

FIG. 4 (color online). (a) Rényi entropy Sð2ÞL ¼ � ln½Trð�2
AÞ�

for 200 spins on a sphere for � ¼ 1=2 (blue circles) and � ¼
1=4 (green crosses) when region A is chosen to be the L spins
that are closest to the North Pole. The solid and dashed lines are
linear fits. (b) The coefficients in (6) for N ¼ 12.

PRL 108, 257206 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

257206-4



[1] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[2] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095

(1987).
[3] A. S. Sørensen, E. Demler, and M.D. Lukin, Phys. Rev.

Lett. 94, 086803 (2005).
[4] R. B. Laughlin, Ann. Phys. (N.Y.) 191, 163 (1989).
[5] D. F. Schroeter, Ann. Phys. (N.Y.) 310, 155 (2004).
[6] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter,

Phys. Rev. Lett. 99, 097202 (2007).
[7] R. Thomale, E. Kapit, D. F. Schroeter, and M. Greiter,

Phys. Rev. B 80, 104406 (2009).
[8] E. Kapit and E. Mueller, Phys. Rev. Lett. 105, 215303

(2010).
[9] G. Moore and N. Read, Nucl. Phys. B360, 362

(1991).
[10] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, J. Stat. Mech.

(2011) P11014.
[11] F. D.M. Haldane, Phys. Rev. Lett. 60, 635 (1988).
[12] B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).
[13] H. Li and F.D.M. Haldane, Phys. Rev. Lett. 101, 010504

(2008).
[14] D. Poilblanc, Phys. Rev. Lett. 105, 077202 (2010).
[15] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal
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