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Superconductor-Insulator Quantum Phase Transition in Disordered FeSe Thin Films

R. Schneider,"* A.G. Zaitsev,' D. Fuchs,' and H. v. Lt')hneysenl’2

Unstitut fiir Festkorperphysik, Karlsruher Institut fiir Technologie, D-76021 Karlsruhe, Germany
Physikalisches Institut, Karlsruher Institut fiir Technologie, D-76131 Karlsruhe, Germany
(Received 30 January 2012; published 20 June 2012)

The evolution of two-dimensional electronic transport with increasing disorder in epitaxial FeSe thin
films is studied. Disorder is generated by reducing the film thickness. The extreme sensitivity of the films
to disorder results in a superconductor-insulator transition. The finite-size scaling analysis in the critical
regime based on the Bose-glass model strongly supports the idea of a continuous quantum phase
transition. The obtained value for the critical-exponent product of approximately 7/3 suggests that the
transition is governed by quantum percolation. Finite-size scaling with the same critical-exponent product
is also substantiated when the superconductor-insulator transition is tuned with an applied magnetic field.
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Many different material systems undergo a
superconductor-insulator transition (SIT) in the limit of
two dimensions (2D) and zero temperature (7 = 0) by
the variation of a tuning parameter such as disorder, an
applied magnetic field, or charge density [I-11].
Theoretical approaches to explain SITs have to deal with
the question of how superconductivity disappears with
increasing disorder. Here the interplay of the attractive
and repulsive electron-electron interactions plays a crucial
role. In the theory of boson localization [12] (also dirty-
boson or Bose-glass model), a continuous SIT is predicted
at 7 = 0 as a result of the competition between quantum
phase fluctuations and long-range Coulomb repulsion. The
prediction of the SIT as a continuous quantum phase
transition (QPT) [13] by the bosonic model is particularly
intriguing. The quantum fluctuations affect physical quan-
tities at nonzero temperatures opening a route for the
experimental study of QPTs. To evaluate measurements
at T # 0 in the critical regime, finite-size scaling [12] is
used, as described below. Scaling renders possible the
determination of the critical exponents and, hence, the
universality class of the transition. For instance, a value
of the correlation-length exponent v of 7/3 is typical for
the universality class of quantum percolation transitions
[14]. As an additional signature, the bosonic model sug-
gests a universal value of the critical sheet resistance equal
to the quantum resistance for electron pairs R, = h /4e? =
6.45 k() (h: Planck constant, e: elementary charge).

Among the unconventional Fe-based superconductors,
B-FeSe is the simplest one with respect to its chemical
composition and crystal structure. The compound has an
ambient-pressure transition temperature 7. of = 8§ K [15].
The tetragonal PbO-type crystal structure consists of a
stacking of parallel sheets with a distance of the c-axis
lattice constant ¢ = 0.55 nm. This layered structure, to-
gether with a significant resistivity anisotropy of 1 order of
magnitude to 2 orders of magnitude perpendicular and
parallel to the sheets, make the compound inherently an
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appropriate candidate for the study of 2D electronic trans-
port in single crystals or thin films with their crystallo-
graphic c-axis perpendicular to the substrate plane.

In this study the evolution of the temperature-dependent
sheet resistance with increasing disorder in c-axis oriented
FeSe thin films is reported. Disorder is induced by decreas-
ing the thickness of identically prepared nearly stoichio-
metric films. At critical values of the thickness and sheet
resistance, a transition from the superconducting to the
insulating state is observed. Finite-size scaling analysis in
the critical regime according to the Bose-glass model
reveals a critical-exponent product consistent with the
prediction of a quantum percolation transition. These find-
ings are independently confirmed when the SIT is tuned
with an applied magnetic field.

The thin films were deposited onto single-crystalline
(001)-oriented MgO substrates by radio-frequency sputter-
ing of a sintered FeSe target. The temperature of the
substrates was kept constant at nominal 480 °C during
deposition. The composition of the films was routinely
inspected by Rutherford backscattering spectrometry. X-
ray diffraction measurements revealed that the films grew
in the tetragonal B phase with a strong c-axis texture
irrespective of the film thickness. The thickness ¢ of the
films was varied over a wide range from nominally 1 nm to
1622 nm. All the films were prepared under otherwise
identical sputtering conditions. Thickness measurements
were usually performed using a stylus profiler or
Rutherford backscattering spectrometry. The as-deposited
films were patterned to stripes of length 1 = 2 mm and
width w = 0.6 mm. The direct-current resistance measure-
ments were carried out between 1.2 K and room tempera-
ture. The resistance of one sample was also measured in an
applied magnetic field ranging from 1 to 14 T perpendicu-
lar to the film plane. The measurement currents were
between 0.1 and 10 wA and well within the linear region
of the current-voltage characteristic. The appropriate
quantity for the description of two-dimensional electronic
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transport is the sheet resistance R, in place of the resistivity
p which characterizes transport in three dimensions.
Therefore, the measured resistance R was converted to
R, = Rwt/lc = p/c which is the sheet resistance R, per
Fe-Se sheet. R, is material specific and represents a resis-
tive quantity averaged over a number N = t/c + 1 of
parallel-connected Fe-Se sheets in a c-axis oriented FeSe
film of thickness ¢. Because of the resistivity anisotropy
perpendicular and parallel to the sheets they are electrically
decoupled to a great extent, and therefore the use of the
sheet resistance per Fe-Se sheet appears to be justified.
Figure 1(a) shows the resistivity py at T = 0 on the left-
hand linear scale as a function of the film thickness on a log
scale. From the maximum obtainable thickness of 1622 nm
which was limited by peeling-off of the film, p, remains
nearly constant down to 342 nm. In this thickness range the
films exhibit bulklike features [16]. However, below a
threshold of 300 nm, p, increases nearly linearly with
decreasing log t. The same thickness-threshold behavior
also appears in the residual resistivity ratio RRR =
p(300 K)/p, shown on the right-hand linear scale in
Fig. 1(a). Figure 1(b) demonstrates the thickness-
dependent T,(¢) midpoint together with the 10%-t0-90%
transition width (bars). Starting with the thickest film, 7.
slightly decreases from a remarkably high value of 10.9 K
which may be due to an annealing effect during the long
deposition time of 50 min, levels out at 8.6 K between 500
and 300 nm, and steeply drops for # < 300 nm. The dashed
line is a Cooper-law fit, T, « exp(—¢~!), which is com-
monly used to fit experimental 7', data in thin films [17]. It
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FIG. 1. (a) Variation of the resistivity p, at T = 0 (left-hand
scale) and the residual resistivity ratio RRR (right-hand scale)
with the film thickness ¢ on a log scale. The dashed lines are
guides to the eye. The bars indicate the spread of the data in the
saturation region above 300 nm. (b) Dependence of the resistive
midpoint 7. on t. The bars represent the 10%-t0-90% transition
widths. The dashed line is a Cooper-law fit to the data points
below 300 nm.

is remarkable that our FeSe films show a threshold for p,,
and RRR, both quantifications of the strength of disorder,
and for T, already at a large thickness of 300 nm. This
observation reveals a very high sensitivity to disorder
mainly induced by decreasing the film thickness.

R, is plotted in Fig. 2 versus the temperature 7 with the
film thickness as a parameter. ¢ extends from 1300 nm
(bottom curve a) to nominally 1 nm (top curve [). For ¢ >
300 nm (curves a and b), R (T, t) behaves like a metal in
the normal state. The zero-resistance state, R (T,y) = 0
(within our resistance resolution of =~ 107* ), is
achieved at T, values from 4.4 to 6.6 K. For t <300 nm
(the thickness threshold found in Fig. 1) the curves c to h
end at a finite resistance at the lowest measurement tem-
perature of 1.2 K. Even the extrapolation to 7 = 0 does not
result in a R,(0) = 0 state. R,(0) increases over three
decades with the thickness decreasing from 263 to
20 nm. The finite resistance is accompanied by the evolu-
tion of pronounced resistance tails becoming broader with
smaller thickness. Their temperature dependence can be
well fitted by an inverse Arrhenius law, R (T) o« exp(T/T,)
with a constant T;, which is typically used to describe the
sheet resistance of disordered granular superconductors
below T, [18]. Granularity means superconducting grains
embedded in an insulating matrix. Electronic transport
between neighboring grains is enabled either by
Josephson tunneling via weak links or by quasiparticle
tunneling. The importance of weak links in our FeSe films
thinner than 300 nm is also evidenced by strong nonline-
arities in the measured current-voltage characteristics over
a three-decade current range above small critical currents
of = 1073 to 10™* A, reflecting a current-dependent sheet

T(K)

FIG. 2. Temperature dependence of the sheet resistance R, per
Fe-Se sheet with the mean film thickness ¢ as a parameter. The
curves are labeled from bottom to top by a to / corresponding to
t = 1300, 800, 263, 95, 80, 64, 29, 20, 19, 10, 2, and 1 nm,
respectively. The inset shows R (B, T) with an applied magnetic
field B perpendicular to the plane of a 30 nm thick film as the
tuning parameter. The values of B are 0, 1, 3, 5, 7, 8.5, 8.9, 9.3,
9.8, 10.5, 11, 12, 13, and 14 T (from bottom to top).
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resistance and a broad critical-current distribution in the
weak-link network. Thermal and quantum phase fluctua-
tions in the superconducting order parameter are suggested
as an explanation for the exponential R, decrease at low
temperatures and the finite resistance at 7 = 0, respec-
tively [18,19]. Therefore, the FeSe films thinner than
300 nm can be categorized as crystalline epitaxial films,
with features in their electronic transport characteristics
that are typical for granularity. The appearance of such
features in addition to the thickness dependence of T,
which is characteristic for epitaxial films might reflect
the existence of two different intrinsic length scales which
are sampled in the approach to a QPT. The presence of
granularity is very compatible with the idea of quantum
percolation which will be discussed below. At a thickness
of 20 nm (curve i) R (T) becomes insulatorlike with a
negative temperature coefficient. Hence, there must be
a critical value ¢, of the thickness where R, takes a
temperature-independent critical value R, that separates
the superconducting and insulating branches of this direct
SIT; i.e., intermediate metallic phases or resistance satura-
tion at the lowest temperatures, as reported in [20], are not
observed. In addition, R;(B, T) of a 30 nm thick film was
measured with a perpendicular magnetic field B as the
tuning parameter. The inset of Fig. 2 manifests a
magnetic-field driven SIT which will be discussed further
below.

The determination of ¢, and R, is demonstrated in the
inset of Fig. 3. Isotherms of R, from 2 to 8 K in steps of 2 K
are plotted against ¢. Their intersection point, at which Ry
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FIG. 3. Finite-size scaling analysis at nonzero temperatures of
the negative film-thickness derivative of the sheet resistance R;
per Fe-Se sheet, —dR,/dt, evaluated at the critical thickness .
for T < 10 K on a log-log scale. The solid line up to 6.5 K is a
linear least-square fit. Its slope gives an exponent product zv =
2.33 = 0.03. The inset shows the thickness dependence of R for
temperatures of 2, 4, 6, and 8 K. The plot serves to determine the
critical thickness ¢z, = 19.5 nm (vertical arrow) and the critical
resistance R, = 19.8 k() (horizontal arrow). Below ¢, R, de-
creases with increasing temperature (insulating regime). Above
t., R, increases with increasing temperature (metallic regime).

does not depend on 7', reveals values of . = 19.5 nm and
R, = 19.8 k), as indicated by the vertical and horizontal
arrows, respectively. R, is approximately 3 times larger
than R,. Experimentally, R, values different from R, have
been published by Yazdani et al. [6] and Markovié et al. [2]
for a number of thin-film materials, although there are also
investigations by Steiner et al. [21] revealing R, close to
R,.Inall, R, values ranging from approximately 0.5 to 3R,
were found experimentally. Thus, Gantmakher and
Dolgopolov [13] concluded that the universality of R, is
confirmed so far only to an order of magnitude or that there
is even no universal R, for all material systems. The results
probably depend on the quality of the samples. In our case
of epitaxial thin films, the dimensionality could deviate
from two due to a low electrical anisotropy perpendicular
and parallel to the Fe-Se sheets enabling interplane elec-
tronic conduction. Unpaired normal electrons (fermionic
excitations) are also suggested by Yazdani et al. [6] to
contribute to the conduction and to obscure the universality
of the Cooper-pair conduction. Theoretically, the critical
resistance is a nonuniversal constant, if no perfect duality
between Cooper pairs (charge) and vortices and a more
realistic interaction between charges are assumed [1].

The finite-size scaling dependence of R, on T and a
tuning parameter x in two dimensions has the form
R,(x,T) = R.f(Ix — x.|/T"*) [12]. x can be the film
thickness as a measure of disorder, magnetic field, or
charge density. |x — x.| = & is called the control parame-
ter, where x,. is the critical tuning parameter. The quantum
mechanical ground state of a system changes when x
crosses the critical value x.. R, is the critical sheet resist-
ance, and f is an arbitrary function with f(0) = 1. The
exponent product zv comprises the correlation-length ex-
ponent » and the dynamical critical exponent z, which are
defined via € ~ |8] 7" and &, ~ &% ~ |8]7%. £ and &, are
the spatial and the temporal correlation lengths, respec-
tively, which diverge near a QPT. The term ““finite size”
refers to the finite scaling variable §/T"/*" o (L, /&)"/".
At finite temperature the divergence of the correlation
length ¢ is cut off by the dephasing length L, which is
bounded by the temperature: & « L, « Tz,

To obtain the exponent product zv, we consider the film-
thickness derivative of R,(r) taken at the critical thickness
t., since log(—dR,/dt)|, = —(1/zv)logT + const ac-
cording to Hebard et al. [6] and Seidler et al. [8]. If the
experimental R, values obey finite-size scaling, a log-log
plot of —dR/dt|, versus T gives a straight line with a
slope equal to —1/zw. This is demonstrated in the main
frame of Fig. 3 for our FeSe data in the vicinity of the
critical thickness (see inset). The plot is linear up to 6.5 K
and reveals an exponent product zv = 2.33 * 0.03. The
deviation from the scaling behavior above 6.5 K may be
due to quadratic finite-temperature corrections neglected in
the above R (7, T) scaling law, or the data may fall outside
the critical regime whose width is unknown.
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FIG. 4. R (B, T) (cf. inset of Fig. 2) normalized to the critical
value R, versus the magnetic-field scaling variable |B —
B.|/T"?" (B, = 8.92 T, zv = 2.33) for 9 temperatures between
1.2 and 2 K, and 29 values of the magnetic field from O to 14 T.
The lower and upper branches take into account the change in
sign of B — B. and are identified with B < B, and B > B,,
respectively. The intersection point of the isotherms between
1.2 and 2 K in steps of 0.1 K in the inset reveals the critical
values of B, = 8.92 T (vertical arrow) and R, = 10.4 k) (hori-
zontal arrow)

To test the scaling form in a second independent way, the
R, (B, T) measurements in the inset of Fig. 2 are used. An
Arrhenius plot, i.e., InR; versus 1/T, for B below the
critical field B, reveals a linear behavior with a finite slope
that turns to zero for B close to B., down to a magnetic-
field dependent limiting temperature, for instance 2.6 K for
B =0and 1.5 K for B =5 T, respectively. This result in
the high-temperature region indicates the thermally acti-
vated motion of vortices with an activation energy
that decreases with increasing magnetic field. Below
the limiting temperature, R, flattens with decreasing tem-
perature and shows a trend to saturation. Such a feature
might be typical for the occurrence of an intervening
metallic state in an indirect magnetic-field driven
SIT [3]. A metallic phase would imply that the SIT is
actually a metal-insulator transition. Nevertheless, the
superconductor-insulator scaling theory [12] describes
our magnetoresistance data very well, as demonstrated
below. For intermediate field strengths, scaling behavior
at higher temperature is often observed in conjunction with
metallic behavior at low temperature according to
Kapitulnik et al. [14]. These temperature and magnetic-
field conditions may define an asymptotic limit for the
finite-size scaling theory. The issue of an intermediate
metallic regime is an open question in the research field
of SIT [1] and requires further experimental and theoretical
studies. In Fig. 4, R (B, T) normalized to the critical value
R. is plotted against the magnetic-field scaling variable
|B — B,|/T"/#” without the use of fitting parameters. B, is
determined by the intersection point of R (B, T = const)
1sotherms and amounts to 8.92 T, as shown in the inset of

Fig. 4. The critical resistance R, amounts to 10.4 k() which
is =~ 1.6R, and hence half the critical value of the
thickness-driven SIT (cf. inset in Fig. 3). The deviation
from R, is not surprising after the above discussion on this
topic. The difference between the magnetic-field and thick-
ness related R, indicates a possible thickness dependence
of R, in a magnetic field for FeSe which deserves further
investigation. Such a dependence was already found in
amorphous Bi and Be [22]. For zv = 2.33 the two branches
B < B, and B > B, collapse onto a single cusplike curve
each when B approaches B,. This result additionally con-
firms the scaling prediction of the Bose-glass model with a
value of 2.33 for the critical-exponent product. A value of
z =1 is predicted for disordered systems of charged bo-
sons where long-range Coulomb interactions are favored
[23], and has been experimentally verified for two-
dimensional amorphous InO, and MoGe films [6].
Assuming z = 1, v = 2.33 = 7/3 is the correlation-length
exponent of anisotropic disordered two-dimensional sys-
tems with a metal-insulator transition [24]. The value is
consistent with the prediction of the quantum percolation
model for the SIT and the quantum Hall effect [14,21]
suggesting that the observed SIT in the disordered FeSe
films is a quantum rather than a classical percolation
transition with v = 4/3.

In summary, the successful finite-size scaling analysis
supports the bosonic description of the disorder and
magnetic-field driven SIT in epitaxial FeSe thin films.
The critical sheet resistance, however, does not meet the
supposed universal quantum resistance for electron pairs,
thus challenging its universality. Our analysis also implies
the two-dimensional character of the electronic transport in
the anisotropic compound. The critical-exponent product
points to quantum percolation underlining the importance
of weak links in the films.
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