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Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this Letter, we develop

and carry out state-of-the-art linear scaling density-functional theory calculations refined with nonlocal

dynamical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott

instability, which is responsible for the insulating M1 phase, and which furthermore survives a moderate

degree of disorder.
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Vanadium dioxide (VO2) undergoes a first order metal-
insulator transition at 340 K [1]. At high temperature, the
crystal structure is metallic with the rutile structure (R),
while it transforms to the monoclinic (M1) phase and
becomes insulating below the transition temperature. The
nature of the metal-insulator transition in VO2 has been
long discussed, with particular emphasis placed on the role
of electron correlations in forming the charge gap.
Photoemission experiments give strong evidence for strong
electron-electron and electron-phonon coupling in VO2

[2], suggesting that this compound is an archetypal Mott
insulator. However, density functional theory (DFT) pre-
dicts theM1 phase to be metallic [3,4]. An alternative point
of view is that the low-temperature phase of VO2 may
constitute a band (Peierls) insulator, where the crystal
distortion with the V-V dimerization splits the a1g bonding

band, as suggested early by Goodenough [5]. Lastly one
should consider a charge transfer insulator exhibiting a
strong mass renormalization [6]. The purpose of this
Letter is to disentangle these competing pictures. The
Peierls picture was supported by DFTþGW calculations,
where the authors found that off-diagonal matrix elements
in the self-energy opened a gap [4], although its value was
almost zero and thus well below the experimental value of
0.6 eV [7]. Very recently, a model Hamiltonian approach
using cluster dynamical mean-field theory (DMFT) ap-
plied to a three band Hamiltonian for the t2g orbitals has

been shown to successfully capture the insulating nature of
the M1 phase [8,9], and the authors found a charge gap of
0.6 eV, in very good agreement with experiment [7]. Hence
VO2 is, in the latter view, not a conventional Mott insulator.
Instead, the formation of dynamical V-V singlet pairs due
to strong Coulomb correlations is necessary to trigger the
opening of a Peierls gap. We note, however, that in Ref. [8]
the vanadium 3d subshell is occupied by a single electron
(0.8 electrons for the a1g with only 0.1 electrons remaining

in each of the e�g orbitals). A general problem with model

Hamiltonian approaches, recently pointed out in Ref. [10],
is that the 3d orbital density is very much affected by the
orbital subset projection used in the calculations. In par-
ticular, it has been shown recently using x-ray absorption
spectroscopy (XAS) measurements [11] that the states of
VO2 are not well characterized by a single dominant ionic
configuration, rather they exhibit a distributed orbital char-
acter, suggesting room for correction of Goodenough’s
ionic picture of VO2.
The key issues that we address in this Letter are (1) Is the

3d1 ionic picture of Goodenough valid and how many
electrons are involved in the orbital selection process?
(2) Can Mott correlations alone drive VO2 to an insulator,
and what is the minimal local repulsion Ud necessary to
localize the charge, i.e., the Zaanen-Sawatzky-Allen (ZSA)
boundary [12,13]? (3) How is the ZSA boundary affected
by other localization processes, such as the Anderson
charge localization induced by disorder, and can we find
an insulator for a combination of realistic disorder and
Coulomb repulsion? (4) Are nonlocal corrections to the
self-energy (the Peierls mechanism) an essential ingredient
to trigger the gap opening for reasonable local repulsion
Ud, and is the latter insulating phase stable against external
perturbations such as disorder? To address these points, we
move beyond the model Hamiltonian approach and inves-
tigate the effect of correlations in a disordered prototype
for the metal-insulator transition in VO2 from the ab initio
perspective. We study the M1 phase of VO2 using first-
principle calculations as a function of static disorder with a
state-of-the-art linear scaling DFT method [14]. The capa-
bility of linear scaling DFT to describe large supercells,
containing several hundreds of atoms, is necessary to
comprehensively tackle the issue of disorder. We extend
our DFT calculations with the DMFT approximation
[15,16] in order to refine the description of the strong
correlations induced by the 3d subshell of the vanadium
sites (for more details see the Supplemental Material [17]).
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Throughout this Letter we used typical values for the
screened Coulomb interaction (U ¼ 4 eV) and Hund’s
coupling (J ¼ 0:68 eV) [18,19], and our calculations
were carried out for 324 atom supercells (108 V atoms)
and 768 atom supercells (256 Vatoms) at fixed temperature
T ¼ 189 K. All orbitals are defined in the local coordinate
system [20] associated with the vanadium atoms.

We first discuss single-site DMFT calculations for para-
magnetic VO2. The dependence of the spectral function on
the on-site repulsionUd is shown in Fig. 1. We find that the
M1 phase of VO2 is metallic for Ud ¼ 4 eV and that there
is a large spectral weight present at the Fermi level. Hence,
VO2 is described by DFTþ DMFT as a charge transfer
correlated paramagnetic metal, with a moderate mass re-
normalizationm�=m ¼ 1:35, of the same order as the mass
renormalization in the rutile phase obtained by other
groups (m�=m ¼ 1:8 from Ref. [3] and m�=m ¼ 1:51
from Ref. [8]). The large spectral weight at the Fermi level
in Fig. 1 is of predominantly dxy character, the contribution

from the eg orbitals being negligible: the spin-independent

orbital densities at the Fermi level ��ð�FÞ are 0.02, 0.02,
0.19, 0.25, and 0.28 for, respectively, dx2�y2 , d3z2�r2 , dyz,

dxz, and dxy symmetry, which indicates a strong selection

of the t2g orbitals at the Fermi level in agreement with the

orbital selection scenario argued long ago by Goodenough
[5]. Notably, we find that the dynamical correlations, de-
scribed by the imaginary part of the self-energy, also
suggest that the dxy orbital is the most correlated orbital,

whereas the eg states are weakly correlated (for more de-

tails see Figs. 2, 3 of the Supplemental Material [17]). We
emphasize that here the oxygen 2p subspaces act merely
as charge reservoirs, since the full Kohn-Sham Green’s
function is computed and then projected onto the corre-
lated 3d subspaces. Indeed, we find that the low energy
physics is obtained by the 3d orbitals near the Fermi level,
in agreement with the previous observation that the spec-
tral features in VO2 clusters are reproduced by an effective
Hamiltonian with 3d orbitals only [21]. However, our
results deviate from the description of Goodenough: we
obtain a vanadium 3d subshell filling of n ¼ 3:15 electrons
from DFT, much larger than the 3d1 configuration of the
ionic picture. We emphasize that we used a set of local
Wannier orbitals, variationally optimized during the en-
ergy minimization carried out in the DFT calculations [22],

which renders the calculation of the electronic density very
reliable. Larger 3d orbital occupations in VO2 than the
single electron have been reported in earlier DFT calcu-
lations (LSDAþU finds n ¼ 2:48 e [11]). We note, fur-
thermore, that similar occupancies are obtained for the R
phase, both by experimental measurement (n ¼ 1:78 e
from XAS [11]) and DFT calculations (LSDAþU finds
n ¼ 2:31 e [11] and LMTO-ASA gives n ¼ 3:35 e [23]).
For larger Ud, we find that the spectral weight at the Fermi
level shrinks, and we obtain an insulator for Ud ¼ 25 eV,
placing VO2 well below the ZSA boundary Uc

d, estimated

between 21 and 25 eV. We conclude that a large 3d-3d
Coulomb interaction alone is not sufficient to generate a
large band gap for VO2, as also suggested by early LDA
calculations [20,24] which failed to reproduce the insulat-
ing state. Finally, we also explored the dependence on the
Hund’s coupling J and found no significant change in the
mass renormalization by varying J between 0.3 and 1.2 eV,
for fixed Ud ¼ 4 eV, although increasing J enhances the
mass renormalization for Ud ¼ 8 eV and Ud ¼ 16 eV.
If Coulomb correlations alone cannot lead to insulating

behavior, perhaps the inevitable disorder due to imperfec-
tions of the crystal, or self-trapping due to strong electron-
phonon coupling could be relevant. Hence we applied a
random three-dimensional Gaussian displacement to both
the Vand O atomic sites. The Gaussian width � character-
izes the amplitude of the disorder. The spectral function for
disorderedVO2 is shown in Fig. 2(a). Although the spectral
weight at the Fermi level is suppressed with increasing
disorder (reflecting charge localization) the system re-
mains metallic up to the largest physical amplitudes of
disorder. The effect of the localization induced by disorder
is also observed in the averaged quasiparticle weight Zd

[Fig. 2(b)] and in the spatial distribution of the local
quasiparticle weight Zd;i [Fig. 2(c)], which clearly shows
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FIG. 2 (color online). (a) Spectral function � of paramagnetic
VO2 in the presence of Gaussian disorder �. (b) Averaged
quasiparticle weight Zd with respect to the repulsion Ud for
zero (� ¼ 0 �A) to large disorder (� ¼ 0:5 �A). Calculations in-
cluding a single O vacancy in the � ¼ 0 �A case are also shown
for comparison (open squares). (c) Distribution of the local
quasiparticle weight Zd;i for � ¼ 0:1 �A. (d) Isosurface of the

real space representation of the Fermi density for disorder
� ¼ 0:3 �A. The large (small) sphere denotes V (O) atoms along
the rutile axis.
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that the disorder generates regions in the crystal with
strong localization, which coexist with metallic parts of
the crystal where the localization has only a weak effect.
These droplets of strongly correlated Fermi liquid generate
a larger mass renormalization m�=m on average, as ob-
served in the decrease of the averaged quasiparticle weight
(Zd ¼ m=m�) as the disorder increases [Fig. 2(b)]. The
localization effect can be understood in a simple picture:
when the O atoms move closer to the V atomic site, the
static charge repulsion induces a larger charge transfer
energy � ¼ �d � �p, which enhances the strength of the

correlation locally (the repulsion U of the one band
Hubbard model translates into the charge transfer energy
in d-p theories [12]). This effect is illustrated in Fig. 2(d),
where we show an isosurface of the real-space representa-
tion of the Fermi density �ð�F; rÞ for one of the V chains

along the rutile axis for � ¼ 0:3 �A, where large (small)
spheres denote V (O) atomic sites. The Vatom highlighted
by a star has two very near oxygen neighbors, which is
expected to induce a larger charge transfer energy. The
latter results in a transfer of charge from the vanadium site
to one of its oxygen neighbors (indicated by an arrow). The
subtle interplay between the localization induced by the
disorder (Anderson-like) and the localization induced by
strong correlations (Mott-like) is captured by the DFTþ
DMFT methodology.

We now move to the nonlocal cluster cellular DMFT
calculations (c-DMFT). In the c-DMFT, the cluster impu-
rity of the Anderson impurity model is mapped onto the 3d
electron subspaces of a pair of V atoms forming a dimer
aligned with the rutile axis. The nonlocality of the self-
energy between dimerized vanadium 3d subspaces is
thereby self-consistently included in the calculations. The
nonlocal correlation present in cluster DMFT drives VO2

to an insulator [Fig. 3(a)], in agreement with earlier DMFT
calculations using model Hamiltonians [8] and we obtain a
gap of �0:6 eV in agreement with both the latter and the
experimental value [7]. We did not observe any finite size
effect, and the Peierls gaps obtained extracted from the 324
and 768 atom supercells are identical. We find that large

disorder quenches the Peierls state for � > 0:1 �A. Very
interestingly, the insulating Peierls state survives for mod-

erate disorder � ¼ 0:1 �A, although the gap is reduced
down to �0:3 eV. We also carried out cluster DMFT
calculations for the case of a single O vacancy: the O
vacancy creates a midgap state [inset of Fig. 3(a)], spatially
localized in the center of the three Vatoms surrounding the
vacancy, as illustrated by the real space representation of
the Fermi level density [Fig. 3(b)]. but does not strongly
affect the band edges. In conclusion, our results suggest
that the Peierls instability in VO2 is very robust, surviving
external perturbations such as the reduction of the long-
range crystallographic order or local impurities. The
imaginary part of the self-energy of the dynamical
Peierls singlet is shown in Fig. 3(c). We observe that the

gap is mainly induced by dynamical correlations in the dxy
orbital, which exhibit a pole at the Fermi level. In our view,
the dynamical V-V dimers generate a Mott instability (the
mechanism may be thus termed Peierls-Mott). In particu-
lar, the spectral weight (inset) shows that the cluster DMFT
almost entirely depletes the dyz orbital, leaving two elec-

trons equally shared between the dxz and dxy orbitals. The

lobe of the latter orbitals point towards the rutile axis,whereas
the dyz orbital is oriented perpendicular to this direction and

thus the latter does not contribute strongly to the orbital
bonding within a V-V dimer. Interestingly, therefore, in our
picture we find that two electrons per V atom lie in bonding
orbitals, leading to a strongMott dynamical divergence in the
self-energy (Peierls-Mott). This contrasts with the picture of
Ref. [8], where a single electron on each V is of bonding
character and the repulsionUd drives the bonding orbitals to a
singlet configuration, following the early proposal of
Sommers andDoniach [25]. In the latter picture, the repulsion
energy may be dramatically reduced by the formation of the
singlet state, manifested in the fact that the low-frequency
behavior of the on-site component of the self-energy, that
associated with the a1g orbital, is linear in frequency, as

opposed to a Mott insulator in which �00 diverges. In our
picture, the nonlocal self-energy affects the hybridization
between intradimer orbitals, and acts to deplete the dyz
orbital, leaving 2 e in two orbitals per V site, in turn generat-
ing a Mott instability which creates a pole in the local
self-energy (Peierls-Mott). We note that the Peierls picture
in our view involves more than one electron, due to the
nontrivial hybridization between the vanadium and
oxygen orbitals, as recently obtained in XAS [11] and
photoemission spectroscopy measurements [26], which
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FIG. 3 (color online). (a) Spectral function � obtained using
cellular cluster DMFT (c-DMFT) calculations without
(� ¼ 0 �A) disorder for moderate (324 atom) and large (768
atom) supercells. Calculations for disordered VO2 (� ¼ 0:1 �A)
and for a single O vacancy are also shown for comparison. Inset:
Enlargement of the low energy scale, the gap of �0:6 eV is
shown. The vacancy introduces a midgap state, highlighted by
the arrow. (b) Isosurface of the real space representation of
the charge density at the Fermi level for calculations for an O
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along the rutile axis (horizontal direction). (c) Imaginary part of
the self-energy and (inset) imaginary part of the Green’s function
for � ¼ 0 �A.
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hint at an occupation of n � 2 for the 3d subshell in theM1

phase. Although we find that the low energy physics is
captured by the correlated 3d orbital subspaces alone, in
agreement with Ref. [21], we note that the oxygen 2p
orbitals contribute indirectly to the correlations present in
the 3d shell by fixing the 3d occupation, which is captured
in our fully ab initio treatment. Finally, the optical con-
ductivity calculated using cluster DMFT [Fig. 4(a)] is in
qualitative agreement with experimental data obtained for
polycrystalline films [27] and thin films [28]. We note that
the optical gap is not dramatically affected by a moderate

degree of disorder � ¼ 0:1 �A [Fig. 4(b)]. For large disor-
der, however,VO2 is a bad metal and we note, in particular,
that no Drude peak is obtained in the optical conductivity,
and that the disorder induces strong oscillations in the
optical response for the infrared frequency range !<
1 eV. In conclusion, we have carried out linear scaling
first-principle calculations, in combination with cluster
DMFT, on VO2, both with and without disorder. We find
that the ZSA boundary of the paramagnetic insulator is
obtained only for unrealistic values of the Coulomb repul-
sion (Ud � 25 eV). We propose a new mechanism for the
insulating M1 phase of VO2 based on an orbital selective
Mott transition, assisted by the Peierls distortion: the
Peierls instability involves an orbital selection, and bonds
the dxy and dxz orbitals along the rutile axis, filling each

orbital with one electron, and in turn generates a Mott
instability. This scenario may be described as a Peierls
assisted orbital selective Mott transition and reconciles
the simpler one electron Peierls picture with recent
soft XAS [11], which points towards a breaking of the
one electron per 3d orbital picture suggested early by
Goodenough [5]. Finally, we demonstrated that the

Peierls phase survives moderate Gaussian disorder (� ¼
0:1 �A), and hence our picture accounts for the observation
of the metal-insulator transition in the experimentally real-
istic, disordered system [29]. Finally, we found that oxygen
vacancies induce a localized midgap state, leaving the band
edges unaffected, shedding some light on thin-film

measurements where substrate strain can induce stoichio-
metric modification [30]. Our results, combining lattice
disorder and a powerful method for describing nonlocal,
dynamical correlation, open up new frontiers for first-
principle materials design under realistic experimental
conditions.
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