
Creep in Colloidal Glasses

M. Siebenbürger,1 M. Ballauff,1 and Th. Voigtmann2,3

1Helmholtz-Zentrum für Materialien und Energie, 14109 Berlin, Germany
2Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
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We investigate the nonlinear response to shear stress of a colloidal hard-sphere glass, identifying several

regimes depending on time, sample age, and the magnitude of applied stress. This emphasizes a

connection between stress-imposed deformation of soft and hard matter, in particular, colloidal and

metallic systems. A generalized Maxwell model rationalizes logarithmic creep for long times and low

stresses. We identify diverging time scales approaching a critical yield stress. At intermediate times,

strong aging effects are seen, which we link to a stress overshoot seen in stress-strain curves.
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The nonlinear response of amorphous solids to external
forces challenges our understanding of slow structural
dynamics and the mechanisms of solid formation. Under
sustained load, a solid deforms viscoplastically and may
eventually yield to flow or fail otherwise. The resulting
slow deformation called creep has been investigated for
over a century [1,2] and can be a major concern in engi-
neering applications. It is known from hard-condensed
matter such as metals, window glasses, and rocks [3,4],
and, more recently, from a variety of amorphous soft
matter [5–10]. This calls for a more detailed analysis of
universal aspects of creep in hard and soft matter, and how
to link various nonlinear material properties probed under
applied load or applied deformation rate.

Here we report on the creep in well-characterized hard-
sphere-like colloidal suspensions close to the glass transition,
imposing a fixed shear stress � after aging the shear-molten
initial stage for various waiting times tw. Monitoring the
deformation �ðtÞ over much larger time spans than usual,
we uncover several regimes in the slow structural dynamics.
We link a nontrivial age dependence to nonmonotonic local
stress relaxation. Close to the yield stress �c (distinguishing
solidlike deformation from plastic flow), we identify a di-
verging time scale connected to low-stress logarithmic creep.

Soft-matter creep has been discussed in the soft glassy
rheology (SGR) [11], fluidity models [10,12], or in terms
of time-dependent structural changes [6]. We follow a
generic route based on a recent nonlinear-response formal-
ism [13,14]. Ignoring tensorial aspects for simplicity,

�ðtÞ ¼
Z t

�1
_�ðt0ÞGðt; t0; ½ _��Þdt0: (1)

The dynamical shear modulus G depends on 2 times sepa-
rately outside stationary states, and on the shear-rate history
in nonlinear response. The linear Maxwell model for visco-
elastic fluids [4] sets Gðt� t0Þ ¼ G1 exp½�ðt� t0Þ=��
where G1 is the low-frequency (plateau) shear modulus,
and � a structural relaxation time. Strong shear ( _�� � 1)

typically causes shear thinning by accelerated structural
relaxation (directly observed in colloids [15]), requiring G
to depend on _�. We are concerned with determining those
_�ðtÞ that fulfill Eq. (1) for a given constant �. The existence
of unique inversions of such a nonlinear integral equation is
nontrivial, and will be assumed here. To highlight generic
features of creep, we discuss the consequences of Eq. (1)
separately for various time windows, from elastic to plastic
deformation regimes.
Experiments are performed on core-shell PS-PNIPAM

particles with a solid poly(styrene) core and a shell
of poly(N-isopropylacrylamide) with 2.5 mol%
N,N0-methylenebisacrylamide (BIS) crosslinker, synthe-
sized and purified as in Ref. [16]. Suspension in an aqueous
5� 10�2 mol=l KCl solution screens electrostatic interac-
tions and makes the system a model for hard spheres [17].
Particles are polydisperse in size (17%) and thermosensi-
tive; below 25�C their hydrodynamic radius follows
R½nm� � 102:4096 nm� 0:7796T nm=�C [17]. We use
two batches of suspensions: (A) ð8:37� 0:02Þ wt% at
T ¼ ð15� 0:05Þ�C; (B) ð7:99� 0:02Þ wt% at T ¼
ð12� 0:05Þ�C. Within error bars, the effective volume
fractions are equal (verified by steady-state flow curves,
which are identical),’¼0:65�0:02 and’ ¼ 0:67� 0:02,
respectively. The glass transition is at ’c � 0:64 [17].
We use a stress-controlled rotational rheometer MCR

301 (Anton Paar) with a cone-plate system (diameter:
50 mm, cone angle: 0.991�, gap height: 0.053 mm).
Sealing the gap with a thin film of low-viscosity parafine
oil minimizes solvent evaporation. Preshear ( _� ¼ 100=s)
was applied for 200 s, followed by a waiting time tw.
Reduced units emphasize the expected generality of the

results: kBT=R
3 � 5:5 Pa for stresses, and �0 ¼ R2=D0 �

0:004ð1Þ s for times (D0 is the free diffusion coefficient).
Our system is characterized by a nonvanishing dynamic
yield stress �y � 0:4kT=R3 [17].

Figure 1 shows the central result of the creep experi-
ment: the time-dependent strain and strain rates following
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the application of constant stress � at t ¼ 0, for various �
and a waiting time tw ¼ 600 s � 1:3� 105�0. Our mea-
surements extend previous ones for similar systems
[18–20] to larger time spans and larger tw=�0 (see below).
Some of the measurements around the yield stress have been
repeated (not shown), to ensure reproducibility. The data
exhibit five regimes. (i) An initial fast growth in �ðtÞ fol-
lowed by oscillations. The latter have been associated with
rheometer inertia [21,22] and will not be analyzed here.
(ii) After that, �ðtÞ shows a plateau over a time window
that expands if � is lowered. The height of this plateau
depends linearly on �, indicating elastic response. (iii) At
large stresses, �>�c, and long times, viscous flow occurs,
characterized by a constant _�ð�Þ. None of these regimes
depend on aging. (iv) Before entering viscous flow, a super-
linear increase in �ðtÞ follows the plateau, sometimes iden-
tified with sudden ‘‘breaking’’ [23,24]. For�<�c, a power
law _�ðtÞ � t�x is indicated. This regime shows strong age
dependence, discussed below. (v) At small stresses,�<�c,
shear rates continue to decay indefinitely for experimentally
accessible times. The data are compatible with _�ðtÞ � 1=t
(indicated by a dashed line) at the longest times, revealed by
a constant in _�t (not shown).

Let us rationalize the five regimes using Eq. (1). A stress
� imposed as an ideal step at t ¼ 0 causes an instantaneous
elastic strain �0: _�ðtÞ ¼ �0�ðtÞ þ � _�ðtÞ where �ðtÞ is the
Dirac delta. The delayed strain rate � _�ðtÞ is regular for
t ! 0 and vanishes for t < 0 due to causality, so that

� ¼ �0Gðt; 0; ½ _��Þ þ
Z t

0
� _�ðt0ÞGðt; t0; ½� _��Þdt0; (2)

�0=� ¼ 1=G0, with the high-frequency shear modulusG0.
Independent linear-response measurements [17] give
G0 � 100kBT=R

3 for our system; corresponding �0 are
indicated in Fig. 1(a) (dotted lines).
Differentiation of Eq. (2) for t ! 0 determines the initial

delayed deformation rate � _�0. Estimating the short-time
relaxation rate of the modulus as _G0 ¼ ðd=dtÞGðt; t0Þt0!t �
�G0=�0, we get � _�0�0 � �=G0 [dotted lines in Fig. 1(b)].
The values are compatible with the measured _� at short
times, regime (i), and serve as an upper bound expected
from linear response.
In the quiescent ideal glass, Gðt; t0Þ attains a long-time

limit G1 <G0, the low-frequency (Maxwell) modulus.
Equation (2) then predicts the linear deformation of the
glass, ��� �0ðG0 �G1Þ=G1. For hard-sphere–like sys-
tems G1=G0 � 1=10 [25], so that �� ¼ Oð10Þ�0. These
values [dashed lines in Fig. 1(a)] agree well with the
measurement in regime (ii). Subsequent plastic deforma-
tion is then caused by the long-time structural dynamics
(� relaxation in the nomenclature of glassy dynamics).
In the viscous-flow regime (iii), �>�c, the flow rate

_�ð�Þ is constant and, within experimental error, given by
the flow curve �ð _�Þ obtained from rate-controlled steady-
state rheology, see Fig. 2. In principle, the static yield
stress, �c, could differ from the dynamic one, �y, obtained

from a sequence of steady-state rate-driven flows with
_� ! 0. Molecular dynamics simulations of glassy dynam-
ics found �c � 1:2�y [26]. Our experiments cannot dis-

tinguish between the two, �c � �y � 0:4kBT=R
3.
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FIG. 1 (color online). (a) Deformation �ðtÞ after application of
a fixed stress �̂ ¼ �=ðkBT=R3Þ ¼ 0:9, 0.5, 0.4693, 0.4224,
0.3943, 0.3755, 0.2628, and 0.1 (top to bottom: all batch A except
�̂ ¼ 0:9, 0.5, 0.1); waiting time tw ¼ 600 s. Dotted (dashed)
lines: short-time (glass-modulus) elastic response. Labels (i) to
(v) mark regions discussed in the text. (b) Shear rate _�ðtÞ obtained
from differentiating the measured �ðtÞ (smoothened for � ¼ 0:1).
Dotted lines: � _�ð0Þ, see text. Dashed line: _� / t�1.

10
-1

10
0

10
1

σ [kT/R
H

3 ]

10
-8

10
-6

10
-4

10
-2

10
0

γ. τ 0

10
-3

10
-2

10
-1

10
0

10
1

τ c
r/

τ 0

FIG. 2 (color online). Steady-state flow curve _�ð�Þ (right axis)
from constant-rate experiments in increasing and decreasing
sequence (crosses; tw ¼ 10 s), and from the stress-controlled
mode of the rheometer (small diamonds). Values read off from
Fig. 1 are shown as large diamonds and circles (batches A and
B). Solid line: Herschel-Bulkley law, �� �c / _�n, with 1=n �
1:85, �c � 0:38. Left axis: time scale �cr for logarithmic creep
from the data (symbols) and a generalized Maxwell model (line),
see text.
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The time scale for the crossover to viscous flow in-
creases as �c is approached from above. This follows
from Eq. (2) since the steady-state GðtÞ decays on a time
scale tf � 1= _�ð�Þ. Since the flow curve can be fitted with a

(Herschel-Bulkley) power law (see Fig. 2), �ð _�Þ��c/ _�n

close to �c, the fluidization time tf diverges as ð�ð _�Þ �
�cÞ�1=n. For our system, 1=n � 1:85. This divergent time
scale has also been identified recently [9]. The value of 1=n
depends on the fitting region; we take the power law to be
an asymptotic expression for � ! �c, as expected from
theory [27]. Right at the yield stress, sublinear rise in �ðtÞ
is expected to continue indefinitely: the curves closest
to �y in Fig. 1 exemplify this. It has been suggested that

a minimum shear rate for steady flow exists [28]; indeed,
_��0 * 5� 10�7 holds for those �>�y we could

measure.
We now examine the waiting-time dependent regime

(iv). Combining the once and twice differentiated Eq. (1),

� €�ðtÞ ¼
Z t

�1
_�ðt0Þ

�
@tGðt; t0Þ

_G0

G0

� @2t Gðt; t0Þ
�
dt0: (3)

For linear-response colloidal dynamics, one proves that
autocorrelation functions such as Gðt� t0Þ are completely
monotone [29]: ð�d=dtÞnGðtÞ 	 0 for all integer n 	 0.
Assuming Gðt; t0Þ to be completely monotone in t for
every t0, Eq. (3) yields � €�ðtÞ 
 0 for all t > 0 [30]. This
inequality is not obeyed for superlinear creep.

Gðt; t0Þ that violate complete monotonicity are known
from rate-controlled startup experiments, where a constant
_�so is switched on at t ¼ 0: typically the resulting stress
�ðtÞ exhibits a maximum �max at the end of the initial
elastic regime before decreasing to its steady-state value
[4]. From Eq. (1), this stress overshoot implies a negative
dip in the corresponding Gðt� t0; _�soÞ [25,31]. Our model
system also exhibits stress overshoots, cf. Fig. 3: at the
strain rates considered, �max is reached for _�sot � 0:1,
indicating a typical strain for yielding of nearest-neighbor
cages [31].

Both the stress overshoot and the superlinear creep
regime show significant age dependence. This is high-
lighted in Fig. 3 by curves for tw ¼ 60, 600, 3600, and
6000 s (tw=�0 ¼ 1:3� 104, 1:3� 105, 7:5� 105, and
1:3� 106). The same waiting times have been used in
the creep experiment; results are shown in Fig. 4. The
height of the overshoot �max increases with increasing tw
while the initial elastic and final viscous parts of the stress-
strain curve do not change. As previously reported [26,32],
the ratio r ¼ ð�max � �ð _�ÞÞ=�ð _�Þ [Fig. 3(b), open sym-
bols] grows logarithmically for two decades of waiting
time. To compensate for this growth, the accumulated
strain needs to decrease at intermediate times. Indeed, for
the creep experiment, r0 ¼ 1=ðG1 _�min�fÞ grows roughly

logarithmically with tw (filled symbols). Here, _�min is the
minimum of the creep shear rate [cf. Fig. 4(b)], and �f is

the time where _� rises again [estimated from �ð�fÞ ¼ 0:2

in Fig. 4(a)]. As evidenced in Fig. 4(b), _�min indeed
decreases with increasing sample age.
It is therefore plausible that related mechanisms lead to

the stress overshoot and to superlinear creep. A simple
ansatz allows us to understand such connection.
Approximating Eq. (1) as a convolution, the Laplace trans-
form reads �=s ¼ s�ðsÞGcreepðsÞ. Assuming _�ðtÞ to be a

combination of three constant shear rates [� _�0, _�min, and
_�ð�Þ], cf. the dash-dotted line in Fig. 4, the convolution
approximation estimates GcreepðtÞ as shown in Fig. 3(c)

(dash-dotted line). It indeed displays relaxation involving
a negative dip typical for the overshoot dynamics, GsoðtÞ
[solid line in Fig. 3(c), from @t�soðtÞ]. GcreepðtÞ decays

about 4 times slower than GsoðtÞ; this is expected since in
the relevant time window, the shear rate entering GcreepðtÞ
is still roughly _�min. From Fig. 4, we indeed estimate
1= _�min � 4� 1= _�ð�Þ for the relevant time scales. Recall
that GðtÞ is a microscopic stress-stress autocorrelation
function. The physical mechanism leading to the dip is
thus identified as an ‘‘elastic recoil’’: local stresses over-
relax when nearest-neighbor cages break under external
driving [31,33].
For �<�y, Eq. (1) can only be solved by an asymptoti-

cally decreasing � _�ðtÞ. Regime (iv) here suggests a power
law, _�ðtÞ � t�x. This may be just a crossover phenomenon.
Yet, a power law with x ¼ 2=3 has been suggested for
creep in metal wires by Andrade already in 1910 [2]; it is
called � creep in hard-condensed matter, and has recently
been found in paper and soft-matter gels [8,9]. A dash-
dotted line in Fig. 4 shows the Andrade creep law for
comparison. Derivations of � creep are based on disloca-
tion dynamics [34–36] and hence not easily transferred to
amorphous systems. Although not confirmed by a rigorous
argument, one possibility is the critical decay law of the
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FIG. 3 (color online). (a) Stress-strain curves: Startup stress
�ðtÞ at constant shear rate _�so (symbols with lines, batch B), as a
function of strain � ¼ _�sot after switch-on, waiting times as in
Fig. 4. (b) Ratio r ¼ �max=�ð _�Þ � 1 (open symbols) and r0 ¼
1=ðG1 _�min�fÞ from the creep experiment (filled) as a function of

tw; see text. Dashed line: 0:06 lntw=�0. (c) Shear modulus GðtÞ
for _�so�0 ¼ 2:85� 10�3 and tw ¼ 6000 s (solid line), and from
�ðtÞ (dash-dotted in Fig. 4) and the convolution approximation.
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mode-coupling theory of the glass transition (MCT),
Gðt; t0Þ � ðt� t0Þ�a as long as shear-induced relaxation is
not dominant [37]. For hard-sphere–like systems, a � 1=3;
inserting this into Eq. (1) yields _�ðtÞ � t�1þa, i.e.,
Andrade’s phenomenological law.

In regime (v), _�ðtÞ is compatible with logarithmic creep,
_�ðtÞ � 1=t. This has first been suggested in 1905 by
Phillips [1] (also called � creep), and is one of the standard
creep laws found in hard matter. It is also reported for
granular systems [10].

To understand the appearance of logarithmic creep, let
us thus assume for � ! 1 a nonlinear generalized
Maxwell model, Gðt; t0Þ ¼ G1 exp½�ðt� t0Þ� _�ðt0Þ=�c�.
This generalizes a model describing shear thinning by
replacing ��1 � ��1 þ _�=�c [25,38]. It predicts a yield
stress �c ¼ G1�c. Equation (1) then is solved by _�ðtÞ ¼
ð�cr=�0Þ=t, under the condition � ¼ �cfð�cr=�c�0Þ with
fðxÞ ¼ xex�ð0; xÞ. Here � denotes the incomplete Gamma
function. fðxÞ increases monotonically and obeys 0 

fðxÞ 
 1: logarithmic creep only exists below the yield
stress. Approaching �c from below (x ! 1), it shifts to
increasingly large time scales [�cr ! 1 as fðxÞ�1�1=x],
as exhibited by the curves of Fig. 1. While its onset is
delayed by aging, both our data and the model suggest the
existence of tw-independent logarithmic creep; in noted
difference to SGR [11]. Unlike in studies of gels and pastes
[5,7,39], we also find no simple scaling law that collapses
curves for different tw.

The left-hand side of Fig. 2 shows the values of �cr
determined from the data (Fig. 1) together with the

prediction of the generalized Maxwell model (using G1 ¼
13kT=R3 and �c ¼ 0:39kT=R3). Given that the model is
very crude, the agreement with the data is good.
In conclusion we have identified generic laws for the

time-dependent creep deformation of a hard-sphere colloi-
dal glass. Below the yield stress (�<�c), Andrade creep
( _�� t�x) and logarithmic creep ( _�� 1=t) provide an in-
triguing connection to the nonlinear deformation behavior
of hard-condensed matter, in particular, metallic systems
[40]. We find a time scale separating the two power laws
that diverges upon the (static) yield stress, as �cr=�0 �
�c�c=ð�c � �Þ.
For large stresses, the system is fluidized eventually, on a

time scale tf that diverges with a different power law,

connected to the steady-state flow curve. Just before that,
the deformation rapidly increases much faster than in
viscous flow; this sudden ‘‘breaking of the glass’’ is also
known from metallic alloys (tertiary creep, often followed
by rupture) [40].
A strong dependence on sample age persists in an inter-

mediate timewindow at all�. There appear to be no simple
scaling laws accounting for the tw dependence. We link the
mechanisms responsible for the fast breaking and its strong
age dependence to the local stress relaxation during cage
breaking also observed in the rate-controlled stress-strain
curves of noncolloidal and colloidal matter.
The different creep laws are qualitatively explained in

terms of the nonlinear Green-Kubo equation (1) and alluding
to features of glassy dynamics for the shear modulus
Gðt; t0; _�Þ. It is a challenge tomicroscopic theories of glasses,
such as MCT under time-dependent flow [14], to recover
those relaxation laws. Although we find no reason to assume
them, it remains to be explored whether flow-induced het-
erogeneities affect the dynamics on the microscopic level.
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