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A first-principles study of the collective oscillation spectrum of a strongly correlated one-component

plasma in a strong magnetic field is presented. The spectrum consists of six fundamental modes that are

found to be in good agreement with results from the quasilocalized charge approximation. At high

frequencies, additional modes are observed that include Bernstein-type oscillations and their transverse

counterparts, which are of importance for the high-frequency optical and transport properties of these

plasmas.

DOI: 10.1103/PhysRevLett.108.255002 PACS numbers: 52.27.Gr, 52.27.Lw, 52.35.Fp

Strongly coupled charged-particle systems in which the
interaction energy exceeds the kinetic energy are of rapidly
growing interest in many fields reaching from condensed
matter to ultracold gases, trapped ions, nonideal plasmas up
to the quark-gluon plasma (e.g., Ref. [1]). Quite often these
systems are subject to a strong magnetic field—examples
are white dwarf stars, neutron star crusts [2,3], magnetized
target fusion scenarios [4,5], and quantumHall systems [6].
Magnetic field effects are also coming into the focus of
laboratory experiments with dusty plasmas [1], ultracold
neutral plasmas [7], and trapped ions [8]. Apart from basic
transport properties such as diffusion [9], the collective
excitation spectra are of fundamental relevance, e.g., for
the response to optical excitation. In two-dimensional (2D)
plasmas, the properties of these wave spectra are firmly
established analytically via the quasilocalized charge ap-
proximation (QLCA) of Kalman and Golden [10–12] and
computer simulations [13]. Strong correlations lead to the
existence of a shear-type mode [14,15] alongside the famil-
iar compressional modes (plasmons) known from weakly
coupled situations. These shear modes could be verified in
2D dusty plasma experiments [16,17]. In the presence of a
strong magnetic field, these transform into two modes
commonly known as magnetoplasmon and magnetoshear,
or upper and lower hybrid mode (e.g., see Ref. [18]).

Surprisingly, the corresponding behavior of the much
more common strongly coupled three-dimensional plas-
mas has remained unexplored, except for a preliminary
study in Ref. [19]. The present work is, therefore, devoted
to filling this gap by a theoretical approach based on the
QLCA and complementary first-principle molecular dy-
namics (MD) simulations. We obtain the complete set of
fundamental linear oscillations and explore their wave-
vector dispersion and polarization. Furthermore, we
present evidence for the existence of nonlinear modes
that are generalizations of Bernstein modes of high-
temperature plasmas [20,21].

Model and simulation method.—We consider a classical
one-component plasma (with a neutralizing homogeneous

background, OCP) subject to an external magnetic field
B ¼ Bêz. The exact equations of motion forN particles are

€r i ¼ Fi=mþ!cvi � êz; i ¼ 1 . . .N; (1)

where vi ¼ _ri and Fi is the Coulomb force due to all
particles j � i. The thermodynamic equilibrium state of
the system is characterized by the coupling parameter

� ¼ q2 � ð4�"0akBTÞ�1, where a ¼ ½3=ð4n�Þ�1=3 is the
Wigner-Seitz radius with the number density n and q
denotes the particle charge. The strength of the magnetic
field B is given by � ¼ !c=!p / B, i.e., the ratio of the

cyclotron frequency !c ¼ qB=m and the plasma fre-
quency !2

p ¼ nq2=ð"0mÞ. The spectra of the longitudinal

and transverse fluctuations, Lðk;!Þ and Tðk;!Þ, of the
OCP follow from the Fourier component of the general
current density operator in standard manner [22,23]:

j ðk; tÞ ¼ XN
j¼1

vjðtÞ exp½ik � rjðtÞ�; (2)

via a temporal Fourier transform F t

1

2�N
lim
t!1

1

t
jF tfjðk; tÞgj2: (3)

The current can be decomposed into a part parallel and a
part perpendicular to k, j ¼ jk þ j?, so application of

Eq. (3) to jk yields the longitudinal spectrum Lðk;!Þ and
to j? the transverse spectrum Tðk;!Þ. Collective oscilla-
tions appear as peaks in these spectra (Fig. 1).
Zero magnetic field.—To set the stage, consider first the

unmagnetized system. In Fig. 1, we plot the longitudinal
and transverse fluctuation spectra Lðk;!Þ and Tðk;!Þ
together with the well-known QLCA results for the collec-
tive modes (solid black lines [14,24]). There are two
remarkable deviations from the familiar spectrum of a
weakly coupled plasma (e.g., Refs. [20,25]). First, the
plasmon dispersion does not show a monotonic increase
as !2ðkÞ ¼ !2

pð1þ 3k2r2DÞ [rD is the Debye radius] but

decays and exhibits oscillations. Second, there exists an
additional shear mode in the transverse spectrum. Figure 1
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also shows that the precise value of � is of minor impor-
tance; increase of the coupling tends to slightly increase
the amplitude of the oscillations. Overall, Fig. 1 indicates
that QLCA describes the oscillation spectrum of a strongly
coupled OCP rather well [26].

Theory for a magnetized OCP.—We now turn to a theo-
retical description of the wave spectrum in a magnetized
strongly correlated OCP using the QLCA approach (e.g.,
Refs. [10,11,24]). The equation of motion for the collective
coordinates�k�ð!Þ in the presence of a magnetic field reads
�
!2��� �D��ðkÞ �

k�k�

k2
!2

p þ i!!c���

�
�k�ð!Þ ¼ 0;

where �¼
0 �1 0

1 0 0

0 0 0

0
BB@

1
CCA; (4)

and D�� is the QLCA dynamical matrix [28], which is a

functional of the pair distribution function gðrÞ. The non-
trivial solutions to Eq. (4) represent the modes of the system,
which turn out be rather complicated. Therefore, here we
concentrate on modes with k k B or k ? B. Their main
properties are summarized in Tab. I and the dispersions are
depicted for three different magnetic field strengths at strong
coupling (� ¼ 100) in Fig. 2. Obviously, there exist five
possible (pairwise parallel or perpendicular) orientations of
the vectors B, k, and r—two (three) of them corresponding
to k k B (k ? B), cf. Table I. At the same time, the QLCA
equation (4) yields six fundamental solutions—three for each
orientation of the wave vector—which we discuss in the
following.
Wave vector parallel to B.—The three solutions of

this type (black lines in Fig. 2) are the longitudinal
plasmon (P), which is unaffected by the magnetic field
since the particles oscillate parallel to B, and two shear-
mode solutions: upper and lower shear (US and LS). The
latter arise from the shear mode of an unmagnetized
plasma, cf. Fig. 1, whose degeneracy is lifted by the
magnetic field. Their frequency difference equals !c

(cf. Table I) and thus grows linearly with B.
Wave vector perpendicular to B.—The three solutions

(red lines in Fig. 2) are the ordinary shear mode (OS) and
the upper and lower hybrid modes (UH and LH). The
ordinary shear mode is B independent since the particle
oscillation occurs along B. The long-wavelength limit of

the UH (LH) mode is ! ¼ ð!2
p þ!2

cÞ1=2 (! ¼ 0). These

two modes have peculiar polarization properties. While all
four other modes are characterized by a fixed orientation of
the displacement vector relative to k—there are one lon-
gitudinal (P) and three transverse oscillations (US, LS,
OS)— the UH and LH modes exhibit particle oscillations
that rotate with time elliptically in the plane perpendicular
to B. To clarify these properties, the bottom part of Fig. 2

shows the modified eccentricity " ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

p
, where

the semimajor axis a ¼ maxfj�xj; j�yjg, the semiminor

axis b ¼ minðj�xj; j�yjÞ, and � equals 1 if �x > �y and

�1 otherwise. Here, ~� is the eigenvector of Eq. (4) for the
solutions UH and LH, respectively. " ¼ þ1 (� 1) for

TABLE I. The six principal collective modes in a magnetized three-dimensional OCP in QLCA. Shown are the relative orientations

of the wave vector ~k, magnetic field ~B, particle displacement ~r, the wave type, the polarization, the dispersion relation !iðkÞ, and its
asymptotic !1

i , for large k and the current spectrum in which they appear. !E ¼ !p=
ffiffiffi
3

p
is the Einstein frequency, DL=T denotes the

longitudinal and transverse parts of D��, �
4
T ¼ ½�2

L �DTðkÞ�2 þ 4!2
cDTðkÞ, and �2

L ¼ !2
p þ!2

c þDLðkÞ.
Name ~kff ~B ~rff ~B ~kff ~r Type Polarization Dispersion !iðkÞ Asymptotic !1

i Spectrum

Plasmon (P) k k k longit. not applicable
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

p þDLðkÞ
q

!E Lk

Upper Shear (US) k ? ? transv. circular 1
2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c þ 4DTðkÞ
p þ!c� 1

2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c þ 4!2
E

q
þ!c� T?

k
Lower Shear (LS) k ? ? transv. circular 1

2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c þ 4DTðkÞ
p �!c� 1

2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c þ 4!2
E

q
�!c� T?

k
Ordinary Shear (OS) ? k ? transv. linear

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðkÞ

p
!E Tk

Upper Hybrid (UH) ? ? t-dep. hybrid in-plane elliptical 1ffiffi
2

p ½�2
L þDTðkÞ þ�2

T�1=2 1
2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c þ 4!2
E

q
þ!c� L? þ T?

?
Lower Hybrid (LH) ? ? t-dep. hybrid in-plane elliptical 1ffiffi

2
p ½�2

L þDTðkÞ ��2
T�1=2 1

2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

c þ 4!2
E

q
�!c� L? þ T?

?

FIG. 1 (color). Longitudinal spectrum Lðk;!Þ and transverse
spectrum Tðk;!Þ of an unmagnetized OCP at � ¼ 100. The
black lines are the QLCA dispersion relations (plasmon and
ordinary shear mode) for � ¼ 100 (solid line) and � ¼ 20
(dashed line).

PRL 108, 255002 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

255002-2



longitudinal (transverse) waves. Moreover, the shape of
this ellipse is k dependent, cf. Fig. 2 [29]. The UH mode
starts longitudinal at long wavelengths and transforms into
a predominantly transverse wave at the first crossing of the
P and OS modes. At each subsequent crossing point,
the dominant character of the wave changes again. The
LH mode exactly mirrors this behavior. For k ! 1, both
modes are in-plane circular. The limit B ! 0 of these
modes is particularly interesting: while all six modes con-
verge to the two modes shown in Fig. 1, the LH and UH
modes only do so in a pointwise manner. The LH, at all k,
remains below the UH; i.e., we observe an avoided cross-
ing of the two at the intersection points of the plasmon and
shear mode (see the case � ¼ 0:1 in Fig. 2).

Simulation results.—Let us now critically test the theo-
retical predictions against the computer experiment. To
this end, Eq. (1) is solved by a microcanonical MD method
for N ¼ 8000 particles, incorporating an arbitrarily strong
static homogeneous magnetic field into the second-order
Velocity Verlet algorithm [30]. Prior to data acquisition,
the system is equilibrated by an isokinetic thermostat. The
above mentioned five possible orientations of B, k, and r
manifest themselves in five different currents of the type

(2), leading to five fluctuation spectra: there are two lon-

gitudinal ones, Lk and L? (the superscript denotes the
mutual orientation of B and r) and three transverse ones,

Tk, Tk
k and T

k
? (the subscript specifies the angle between B

and k in case of an ambiguity). The correspondence of the
five fluctuation spectra to the six collective oscillations can
be seen in Table I.
Figure 3 shows the wave spectra of a magnetized OCP at

� ¼ 100 and � ¼ 1:0. To capture the two hybrid modes,
the two spectra L?ðk;!Þ and T?

?ðk;!Þ have been added

together. Six frequency peaks can be identified whose
position and full width at half maximum (FWHM) are
indicated in the figure at selected values of ka. Overall, a

FIG. 2 (color online). The modes of a 3D magnetized OCP
(� ¼ 0, � ¼ 100) in QLCA: plasmon (P), ordinary shear (OS),
upper hybrid (UH), lower hybrid (LH), lower shear (LS), and
upper shear (US), for three magnetic field strengths. Modes with
k k B are shown in black (dark), and those with k ? B in red
(light). Bottom: k dependence of the eccentricity " of the UH
(black) and LH (red) for � ¼ 0:1 (solid) and � ¼ 0:5 (dashed).
Simulation results are shown by the symbols for the UH mode at
� ¼ 100 and � ¼ 0:5.

FIG. 3 (color). The complete set of oscillation spectra of a
magnetized OCP at � ¼ 100 and � ¼ 1:0 for frequencies
! � 2!p. The solid lines correspond to the six QLCA modes

that are labeled in the figure, cf. Tab. I. The orientation of the
magnetic field (blue), wave vector (orange), and particle oscil-
lations (red) are indicated by the large arrows. The small arrows
on the abscissa indicate the positions at which the peaks vanish
at small k and at which k the wave frequency equals the FWHM
of the peak (given by the ‘‘error’’ bars), respectively.
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good agreement with the QLCA modes is evident.
Similarly, the eccentricity 	 of the UH mode observed in
the simulation agrees well with the QLCA predictions for
ka & 5 (lower panel of Fig. 2). These conclusions are
representative and hold also for other values of � and �.
At the same time, there exist four noticeable deviations of
the QLCA from the simulations. The first is observed at
low frequencies (corresponding to long times) due to the
breakdown of the QLCA assumption of a frozen potential
landscape [12]. Second, the low-frequency shear modes
vanish at small k (see small arrows in Fig. 3), which is not
reproduced in QLCA [31,32]. Third, the QLCA does not
include damping and thus no information about the domain
of existence of the waves in the k space can be accessed, in
contrast to the simulations (small arrows in Fig. 3). Finally,
it has been observed that QLCA misses the high-frequency
part of the spectrum in a 2D magnetized OCP, where
Bernstein-type modes were found in the simulations
[33,34]. It is, therefore, tempting to analyze in more detail
the frequency region that is not captured by Fig. 3.

In the left column of Fig. 4, we present the high-
frequency part of the B ? k spectra. In addition to the
UH and LH modes, for � * 0:5 the spectrum L? þ T?

?
exhibits a number of equally spaced further peaks that
clearly resemble Bernstein modes of high-temperature
plasmas (e.g., Ref. [20,21]). In a 2D OCP it was found
recently that ‘‘dressed’’ (modified by correlations)
Bernstein modes reappear at strong coupling [33,34]. The
analysis of the present 3D spectra shows that these modes
appear at multiples of the high-k limit of the upper shear
and upper hybrid frequency (see the asymptotics in

Table I), !1
UH ¼ !1

US � !1 ¼ 1
2 ½ð!2

c þ 4!2
EÞ1=2 þ!c�,

with the Einstein frequency !E ¼ !p=
ffiffiffi
3

p
.

Apart from this similarity to a 2D OCP, the spectrum in
3D is much richer, and the harmonics n!1 show up also in
other fluctuations. Indeed, as can be seen in the lower left
part of Fig. 4, the harmonics emerge also in the spectrum

Tk around the same frequencies (solid gray lines).
However, these peaks are visible only at small ka, whereas
at higher ka a double-peak structure emerges at n!1 �
!E. This structure is accompanied by a broadening of the
higher harmonics peaks in L?ð!Þ þ T?

?ð!Þ that develop
‘‘shoulders’’ around n!1 �!E. A similar trend is ob-
served in the twoB k k excitation spectra, cf. right column
of Fig 4. Here, the US mode is clearly seen in T?

k ð!Þ as a
peak around !=!p 	 5. Additionally, the second har-

monic of the US is visible around !=!p 	 10. These

two peaks also appear in Lkð!Þ, alongside the low-

frequency plasmon peak at !=!p 	 1=
ffiffiffi
3

p
, cf. Table I.

The peaks at !=!p 	 5, 10 are accompanied by the

same double-peak structure seen in the cross-field wave
spectra.
All of these high-frequency features can be understood

within a common simple physical picture: scattering of
multiple short wavelength oscillations where !1 þ!2 ¼
!12 and k1 þ k2 ¼ k12, a well-known mechanism in high-
temperature plasmas [20,25] and nonlinear optics. In fact,
the nth harmonic of the US (UH) is explained by a cascade
of nonlinear inelastic interactions !1 ! 2!1 ! . . . n!1.
On the other hand, the pair of side peaks at!1 �!E in the
left column of Fig. 4 arise from the scattering of an UH
(frequency !1) with an OS wave (frequency !E), and the
analogous peaks in the right column of Fig. 4 are due to a
scattering of an US mode and a plasmon (frequencies !1
and !E). Finally, the appearance of the peaks at !=!p 	
5, 10, 15 in Tk (at !=!p 	 5, 10 in Lk) are due to elastic

scattering of an UH (US) mode (or a corresponding higher
harmonic) with that frequency during which the particle
oscillation direction is turned from in-plane ( ? B) to out-
of-plane ( k B), which requires a finite shear elasticity—a
remarkable feature of strongly correlated plasmas [35]. It is
particularly striking that this mechanism also excites novel

longitudinal modes in the plasmon spectrum Lk that have a
B-dependent frequency, in contrast to the fundamental
plasmon.
In summary, we have presented the complete collective

oscillation spectrum of a strongly correlated one-
component plasma in a magnetic field. The OCP supports
six base modes—three for each k—that are well described
by the QLCA, as well as additional oscillations arising
from elastic and inelastic wave scattering. They are fueled
by the familiar Bernstein scenario of harmonics generation
in a magnetic field, but their base frequency is modified by
correlations and differs from!c. Furthermore, correlations
give rise to a novel class of modes: transverse Bernstein

FIG. 4 (color online). Fluctuation spectra of an OCP extended
to high frequencies, for � ¼ 5 and three wave numbers, as
indicated in the figure (ka ¼ 9:74, 4.87, 0.97 from top to bottom
line). Vertical lines indicate the harmonics n!1 and the fre-
quencies n!1 �!E.
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waves, which are harmonics of the upper shear oscillation.
The present results are representative for a broad range of
coupling parameters and for Coulomb and Yukawa OCP as
well. They are, therefore, expected to be of direct relevance
for the high-frequency transport and optical response of a
broad spectrum of strongly coupled magnetized plasmas—
from white dwarf and neutron stars to trapped ions and
dusty plasmas.
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