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Machine learning is used to approximate density functionals. For the model problem of the kinetic
energy of noninteracting fermions in 1D, mean absolute errors below 1 kcal/mol on test densities similar
to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density

is within the interpolation region. Via principal component analysis, a projected functional derivative finds

highly accurate self-consistent densities. The challenges for application of our method to real electronic

structure problems are discussed.
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Each year, more than 10000 papers report solutions to
electronic structure problems using the Kohn-Sham (KS)
density functional theory (DFT) [1,2]. All approximate the
exchange-correlation (XC) energy as a functional of the
electronic spin densities. The quality of the results cru-
cially depends on these density functional approximations.
For example, the present approximations often fail for
strongly correlated systems, rendering the methodology
useless for some of the most interesting problems.

Thus, there is a never-ending search for improved XC
approximations. The original local density approximation
(LDA) of Kohn and Sham [2] is uniquely defined by the
properties of the uniform gas and has been argued to be a
universal limit of all systems [3]. But the refinements
that have proven useful in chemistry [4] and materials
[5] are not, and they differ both in their derivations and
details. Traditionally, physicists favor a nonempirical
approach, deriving approximations from quantum
mechanics and avoiding fitting to specific finite systems
[6]. Such nonempirical functionals can be considered
controlled extrapolations that work well across a broad
range of systems and properties, bridging the divide be-
tween molecules and solids. Chemists typically use a few
[7,8] or several dozen [9] parameters to improve the
accuracy on a limited class of molecules. Empirical func-
tionals are limited interpolations that are more accurate
for the molecular systems they are fitted to, but often fail
for solids. Passionate debates are fueled by this cultural
divide [10].

Machine learning (ML) is a powerful tool for finding
patterns in high-dimensional data. ML employs algorithms
by which the computer learns from empirical data via
induction, and it has been very successful in many applica-
tions [11-13]. In ML, intuition is used to choose the basic
mechanism and representation of the data, but not directly
applied to the details of the model. Mean errors can be
systematically decreased with an increasing number of
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inputs. In contrast, human-designed empirical approxima-
tions employ standard forms derived from general prin-
ciples, fitting the parameters to training sets. These
explore only an infinitesimal fraction of all possible func-
tionals and use relatively few data points.

DFT is useful for electronic structure because the under-
lying many-body Hamiltonian is simple, while an accurate
solution of the Schrodinger equation is very demanding. All
electrons Coulomb repel one another and have spin 1/2,
which makes the Hohenberg-Kohn theorem [1] possible.
But real electronic structure problems are further limited to
only those one-body potentials due to Coulomb attraction to
the nuclei. ML is a natural tool for taking maximum advan-
tage of this simplicity. For ML to be useful, a pattern must
exist, but one that evades human intuition. Furthermore, most
present approximations begin from LDA [2] and fail misera-
bly when LDA is a poor starting point. A ML-produced
functional suffers no such bias, and so it should be most
useful where present approximations fail if it has good
examples to train on.

Here, we adapt ML to a prototype density functional
problem: noninteracting spinless fermions confined to a
1D box, subject to a smooth potential. We define the key
technical concepts that are needed to apply ML to DFT
problems. The accuracy we achieve in approximating the
kinetic energy (KE) of this system is far beyond the capa-
bilities of any present approximations, and it is even suffi-
cient to produce highly accurate self-consistent densities.
Our ML approximation (MLA) achieves chemical accuracy
using many more inputs, but requires far less insight into the
underlying physics.

We illustrate the accuracy of our MLA with Fig. 1, in
which the functional was constructed from 100 densities on
a dense grid. This success opens up a new approach to
functional approximation, entirely distinct from previous
approaches: our MLA contains ~103 empirical numbers
and satisfies none of the standard exact conditions.
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FIG. 1 (color online). Comparison of a projected (see within)
functional derivative of our MLA with the exact curve.

The prototype DFT problem we consider is N noninter-
acting spinless fermions confined to a 1D box, 0 = x = 1,
with hard walls. For continuous potentials v(x), we solve
the Schrodinger equation numerically with the lowest N
orbitals occupied, finding the KE and the electronic density
n(x), the sum of the squares of the occupied orbitals. Our
aim is to construct a MLA for the KE T[n] that bypasses
the need to solve the Schrodinger equation—a 1D analog
of orbital-free DFT [14]. (In 3D orbital-free DFT, the local
approximation as used in the Thomas-Fermi theory, is
typically accurate to within 10%, and the addition of the
leading gradient correction reduces the error to about 1%
[15]. Even this small an error in the total KE is too large to
give accurate chemical properties.)

First, we specify a class of potentials from which we
generate densities, which are then discretized on a uniform
grid of G points. We use a linear combination of three
Gaussian dips with different depths, widths, and centers,

3
= > azexpl—(x — b)?/(2c)]. (1)
i=1

We generate 2000 such potentials, randomly sampling
1<a<10,04<b<0.6, and 0.03 < ¢ <0.1. For each
v;(x), we find for N up to four electrons, the KE T  and
density n;y in RY on the grid using Numerov’s method
[16]. For G = 500, the error in T'; y due to discretization is
less than 1.5 X 1077. We take 1000 densities as a test set,
and choose M others for training. The variation in this data
set for N = 1 is illustrated in Fig. 2.

Kernel ridge regression is a nonlinear version of regres-
sion with regularization to prevent overfitting [17]. For
kernel ridge regression, our MLA takes the form,

T™L(p Z ajk(n;, n (2)

where «; are weights to be determined, n; are training
densities, and k is the kernel, which measures similarity

between densities. Here, T is the mean KE of the training

x

FIG. 2 (color online). The shaded region shows the extent of
variation of n(x) within our data set for N = 1. Exact (red, solid)
and a self-consistent (black, dashed) density for potential of Fig. 3.

set, inserted for convenience. We choose a Gaussian kernel,
common in ML,

k(n, n') = exp[—|ln — n'l*/(207)] A3)

where the hyperparameter o is called the length scale. The
weights are found by minimizing the cost function,

M
= S AT + Allal? 4

j=1

where AT; = T}V[L —T; and a = (aj, ..., ay). The sec-
ond term is a regularizer that penalizes large weights to
prevent overfitting. The hyperparameter A controls regulari-
zation strength. Minimizing C(e) gives

= (K+ AD7'T, (5)

where K is the kernel matrix with elements K;; = k(n;, n;),
and [ is the identity matrix. Then o and /\ are determmed
through tenfold cross validation: the training set is partitioned
into 10 bins of equal size. For each bin, the functional is
trained on the remaining samples, and o and A are optimized
by minimizing the mean absolute error (MAE) on the bin.
The partitioning is repeated up to 40 times, and the hyper-
parameters are chosen as the median over all bins.

Table I gives the performance of 7M™ [Eq. (2)] trained on
M N-electron densities and evaluated on the corresponding
test set. The mean KE of the test set for N = 1 is 5.40 hartree
(3390 kcal/mol). To contrast, the LDA in 1D is 7"¢[n] =
7* [dxn3(x)/6 and the von Weizsicker functional is
T%[n] = [dxn'(x)*/[8n(x)]. For N =1, the MAE of
T'¢ on the test set is 217 kcal/mol, and the modified
gradient expansion approximation [19], TMCEA[n] =
T'[n] — ¢T"[n], has a MAE of 160 kcal/mol, where
¢ = 0.0543 has been chosen to minimize the error (the
gradient correction is not as beneficial in 1D as in 3D).
For TMX, both the mean and maximum absolute errors
improve as N or M increases (the system becomes more
uniform as N — o [3]). At M = 80, we have already
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TABLE I. Parameters and errors (mean absolute, standard 40 "
deviation, and max absolute in kcal /mol) as a function of electron
number N and number of training densities M. Brackets represent s 50l |
errors on self-consistent densities with m = 30 and € = 5. The « j 3
are on the order of 10° and both positive and negative [18]. 0
= 0 ~k

N M AX10% o AT |AT]  |AT|m 2, U’

N
1 40 57600 238 33 3.0 23 |>: \, /"
1 60 10000 95 1.2 1.2 10 | 201 I
1 80 4489 48 0.43 0.54 7.1 —NMLA
1 100 12 43 0.15[3.0] 0.24[5.3] 3.2[46] _40 N 1 I | Exact
1 150 6.3 33 0.06 0.10 1.3 0 0.5 1
1 200 32 28 0.03 0.05 0.65 z
2 100 1.7 52 0.13[1.4] 020[3.0]  1.8[37] FIG. 3 (color online). Functional derivative of 7ML, evaluated
3 100 4.0 74 0.12[09] O0.18[1.5] 1.8[14] on the density of Fig. 2.
4 100 2.0 73 0.08[0.6] 0.14[0.8] 2.3[6]
1-4* 400 32 47 0.12 0.20 3.6

*Training set includes n;y, forj=1,...,100, N =1,...,4.

achieved ‘‘chemical accuracy,” i.e., a MAE below
1 kcal/mol. At M = 200, no error is above 1 kcal/mol.
Simultaneously incorporating different N into the training
set has little effect on the overall performance, and we stop
at N = 4 merely for convenience. Note that our accuracy is
so high that energy differences due to very subtle density
changes are accurately captured by our approximation.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
KE functional that predicts only the energy is useless in
practice, since orbital-free DFT uses functional derivatives
in self-consistent procedures to find the density within a
given approximation, via

8T[n]

o) M7 v(x), (6)

where w is adjusted to produce the required particle number.
The (discretized) functional derivative of TM" is

M
ivnrw(") =Y an; — mk(n;m),  (7)
J=1

where o = a i/ (o>Ax). This oscillates wildly relative to
the exact curve (Fig. 3), typical behavior that does not
improve with increasing M. No finite interpolation can
accurately reproduce all details of a functional derivative,
and this behavior probably worsens when more varied
densities are treated.

We overcome this problem using principal component
analysis (PCA). The space of all densities is contained in
RC, but only a few directions in this space are relevant.
For a given density n, find the m training densities
(n e jm) closest to n. Construct the covariance matrix
of directions from n to each training density C = X' X/m,
where X = (njl -n,...,n; — n)". Diagonalizing C €
RE*C gives eigenvalues A; and eigenvectors x; that we list

in decreasing order. The x; with larger A; are directions
with substantial variation in the data set. Those with A;
below a cutoff are irrelevant [18]. In these extraneous
dimensions, there is too little variation within the data
set, producing noise in the model functional derivative.
By projecting onto the subspace spanned by the relevant
dimensions, we eliminate this noise. This projection is
given by P, ((n) = V'V where V = (x|,...,x,) " and ¢
is the number of relevant eigenvectors. In Fig 1, with
m =30 and € =5, the projected functional derivatives
are in excellent agreement.

The ultimate test for a density functional is the error of
the functional evaluated on the self-consistent density that
minimizes the total energy. This error will be several times
larger than that of the functional evaluated on the exact
density. For example, T'° on particles in 1D flat boxes
always gives a four-times larger error. To find a minimizing
density, we perform a gradient descent search that is re-
stricted to the local PCA subspace. Starting from a guess
n®, take a small step in the opposite direction of the
projected functional derivative of the total energy in each
iteration j as follows:

nUth) = pi) —eP, (nV)v + V,T™ (V) /Ax], (8)

where € is a small number and v is the discretized poten-
tial. The search is unstable if € is too large, inaccurate if €
is too small, and relatively insensitive to m [18].

The performance of 7MY in finding self-consistent den-
sities is given in Table I. The errors are an order of
magnitude larger than that of 7MY on the exact densities.
We do not find a unique density, but instead a set of similar
densities depending on the initial guess (e.g., Fig. 2). The
density with the lowest total energy does not have the
smallest error. Although the search does not produce a
unique minimum, it produces a range of similar but valid
approximate densities, each with a small error. Even with
an order of magnitude larger error, we still reach chemical
accuracy, now on self-consistent densities. No existing KE
approximation comes close to this performance.
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What are the limitations of this approach? ML is a
balanced interpolation on known data, and it should
be unreliable for densities far from the training set. To
demonstrate this, we generate a new data set of 5000
densities with N = 1 for an expanded parameter range:
0.1 <a<20, 0.2<b<0.8, and 0.01 <¢<0.3. The
predictive variance (borrowed from Gaussian process
regression [20])

V[TMY(n)] = k(n, n) — k(n) (K + AI)"'k(n), (9)

where k(n) = (k(n,, n), ..., k(ny, n)), is a measure of the
uncertainty in the prediction TM"(n) due to sparseness of
training densities around n. In Fig. 4, we plot the error AT
as a function of log{V[T™M!(n)]}, for both the test set and
the new data set, showing a clear correlation. From the
inset, we expect our MLA to deliver chemical accuracy
for log{V[TM\(n) ]} < —24.

Does ML allow for human intuition? In fact, the more
prior knowledge we insert into the MLA, the higher the
accuracy we can achieve. Writing T = TV + T,, where
T, = 0 [14], we repeat our calculations to find a MLA for
T,. For N = 1, we get almost zero error and a factor of 2—4
reduction of error otherwise. Thus, intuition about the
functional can be built in to improve results.

The primary interest in KS DFT is XC for molecules and
solids. We have far less information about this than in the
prototype studied here. For small molecules and simple
solids, direct solutions of the Schrodinger equation yield
highly accurate values of Eyxc. Imagine a sequence of
models, beginning with atoms, diatomics, etc., in which
such accurate results are used as training data for a MLA.
In the case of XC, the key issues are how accurate a
functional can be attained with a finite number of data,
and what fraction of the density space it is accurate for.

A more immediate target is the noninteracting KE in
KS DFT calculations. An accurate approximation would

200 T T

=
S

AT (kcal/mol)
(=}

—100

—24 =20 16 n
log(V[T""(n)))

FIG. 4 (color online). The correlation between MLA error
and predictive variance for N = 1, M = 100. Each point rep-
resents a density in the test set (blue) or new data set (red). The
vertical line denotes the transition between interpolation and
extrapolation.

allow finding densities and energies without solving the
KS equations, greatly increasing the speed of large cal-
culations [14]. The key differences with our prototype is
the three-dimensional nature, the Coulomb singularities,
and the variation with nuclear positions. For this problem,
finding self-consistent densities is crucial, and hence our
focus here. But in the 3D case, every KS calculation ever
run, including every iteration in a self-consistent loop,
generates training data—a density, KE, KS potential, and
functional derivative. The space of all systems of practical
interest, including both solids and molecules, is vast, but
can be approached in small steps, including always train-
ing on ‘“‘nearby’’ densities.

Continuing the discussion of the KE functional, our demo
has been (purposely) limited to a very simple class of poten-
tials. But unlike traditional fitting to limited approximate
forms of a functional, there is no reason a priori to expect
our method to scale poorly with the complexity of the one-
body potential. In ML, the problem is reduced to approximat-
ing a functional by a scalar function of a high-dimensional
domain (500 here). The difficulty depends on how smooth
this functional is, which determines how many training
densities we need to interpolate accurately. We estimate the
effective dimensionality, or RDE [21], of our data at about 12.
We anticipate this to increase by a modest factor when deal-
ing with electrons of differing character (e.g., d and f elec-
trons), but not exponentially, for the weakly correlated
systems for which present XC functionals are useful.
Moreover, statistical learning theory shows [17,22] that the
error of regression estimators (i.e., our method) scales
asymptotically as 1/M with the number of training data M
for faithful models and as 1/ \/1—\4— for unfaithful ones. As is
customary in ML, none of these questions will be answered
until the full problem has been attempted. Preliminary model
calculations for bond dissociation, where most present ap-
proximations fail due to their local nature, show only a mild
increase in the need for training data [23].

Two last points. The first is that this type of empiricism
is qualitatively distinct from that present in the literature
[10]. The choices we made are those customary in ML and
require no intuition about the physical nature of the prob-
lem. Second, the approximation is expressed in terms of
about 10° numbers, and only the projected functional
derivative is accurate. We have no simple way of compar-
ing such approximations to those presently popular. For
example, for N = 1 in the prototype, the exact functional is
TV . How is this related to our MLA, and how does our
MLA account for this exact limit?
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