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The ionization of an atom by a high-frequency intense laser pulse, where the energy of a single photon is
sufficient to ionize the system, is investigated from first principles. It is shown that as a consequence of an ac
Stark effect in the continuum, the energy of the photoelectron follows the envelope of the laser pulse. This is
demonstrated to result in strong dynamic interference of the photoelectrons of the same kinetic energy
emitted at different times. Numerically exact computations on the hydrogen atom demonstrate that the

dynamic interference spectacularly modifies the photoionization process and is prominently manifested in
the photoelectron spectrum by the appearance of a distinct multipeak pattern. The general theory is well
approximated by explicit analytical expressions that allow for a transparent understanding of the discovered
phenomena and for making predictions on the dependence of the measured spectrum on the pulse.
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Dipole transitions between bound electronic states of
matter mediated by intense laser pulses are affected by a
fundamental energy shift induced by the oscillating external
field of the laser known as the dynamic or ac Stark effect
[1-8]. The ac Stark effect induced by optical laser fields is
used in a myriad of contemporary experiments to hold and
align molecules [9], to shape potential energy surfaces [10],
to make rapid transient birefringence [11,12], and to control
quantum systems [13,14]. What happens if the transition is
to the continuum and not to a bound electronic state? Here,
we investigate the photoionization of an atom by a high-
frequency strong laser pulse, where the energy of a single
photon is sufficient to ionize the system. We demonstrate
that the interplay between the photoionization and the ac
Stark shift results in a hitherto unrecognized dynamic inter-
ference of photoelectrons of the same kinetic energy emitted
at different times. The effect is universal and prominently
manifested in the photoelectron spectrum.

In bound-bound electronic transitions accessible to op-
tical lasers, the ac Stark effect detunes the laser frequency
away from the field-free resonant frequency, an effect that
has to be compensated for in the presence of strong fields in
order to have a transition. The situation is different in the
case of ionization. The new generation of light sources,
like the free electron laser (FEL) at FLASH [15], and
recent progress in high-order harmonic generation tech-
niques [16,17] allow one to produce ultrashort laser pulses
with single-photon energies well above the ionization
threshold of any matter. This immediately raises the fun-
damental question of how the well-studied, single-photon
ionization process in weak fields will be modified in in-
tense laser fields of high frequencies. We shall demonstrate
here that single-photon ionization by high-frequency
strong pulses is accompanied by dynamic interference
caused by the ac Stark effect in the continuum.

0031-9007/12/108(25)/253001(5)

253001-1

PACS numbers: 33.20.Xx, 41.60.Cr, 82.50.Kx

In order to illustrate the new fundamental effect, we
have chosen as an explicit example the photoionization
of the hydrogen atom which is not affected by many-
electron correlations and, thus, is amenable to exact
computations. The ac Stark effect arises from the indirect
coupling of nonresonant (nonessential) states that do
not participate directly in the excitation process [18].
To arrive at an unequivocal description of the process,
we have computed exactly the quantum motion of
the whole discrete and continuum electron spectrum of
hydrogen exposed to a strong pulse. For the sake of
transparency of presentation, we show below explicitly
only the essential states (i.e., 1s — &p ionization) and
employ the simplifying rotating wave approximation
(RWA), which turns out to describe well the underlying
physics. In the full calculations, we have used also the
nonessential states and discarded the RWA (see below
and Appendix for details).

An atom initially in its ground electronic state |I) of
energy of E; = 0 (chosen as the origin of the energy scale)
is ionized into the final electron continuum state |Fe) of
energy IP + & (where IP = Er — E; is the ionization
potential and ¢ is the kinetic energy of the photoelectron)
by a linearly polarized laser pulse of carrier frequency w
and pulse-shape function g(#). Following [19-24], the total
wave function of the system as a function of time reads

V() = a0l + f dea,()|Fee @, (1)

where a;(z) and a,(r) are the time-dependent amplitudes
of the populations of the initial and final continuum states,
the latter being dressed by the field (redefined by multi-
plying with the phase factor ¢/“’ [21]). Inserting W(¢) into
the time-dependent Schrodinger equation for the total
Hamiltonian of the atom plus its interaction with the laser
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field, we obtain the following set of equations for the
amplitudes (atomic units are used throughout)

iar() = [ ds{% ai€ole(t)ac o) (2a)

mgnzggakmmm+up+s—m%m.@m

&y is the peak amplitude of the field £(¢) = Eyg(f) coswt,
and d, = (Fel|Z|I) is the energy-dependent ionization
dipole transition matrix element, which can be exactly
computed for hydrogen.

The calculations were performed for a Gaussian-shaped
pulse, g(r) = e~ "/, and carrier frequency w =53.6057¢V,
which is well above the ionization potential IP=
13.6057eV. The photoelectron spectra computed for two
pulse durations and different peak intensities (defined as
I = &%/8ma) are depicted in Fig. 1. One can see that the
effect of a strong laser pulse on the spectra is enormous.
Instead of a single peak at ey = @ — IP = 40 eV with the
width of the pulse as naively expected from weak-field
calculations, the spectra are substantially shifted and spread
and posses distinct modulations of the intensity. The effect is
so big that it can easily be verified experimentally.

To uncover the underlying physics, we show the time
evolution of the photoelectron spectrum in Fig. 2 computed
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FIG. 1. Photoelectron spectra of the hydrogen atom exposed to

Gaussian-shaped pulses of 30 fs (left panel) and 3 fs (right panel)
durations with carrier frequency o = 53.6057 eV computed
exactly for different peak intensities. In weak-field single-photon
ionization, the photoelectron line appears as a Gaussian peak
centered around the energy of ¢y = w — IP = 40 eV (indicated
by the vertical broken line) and a width provided by the pulse:
FWHM of about 52 meV for the 30 fs pulse, and 0.52 eV for the
3 fs pulse. The presently computed strong pulse ionization
spectra are, however, much broader (by several times), shifted
to higher energies from the central electron energy of g, =
40 eV, and posses distinct modulations of the electron intensity.
It will be shown that these modulations are due to dynamic
interference in the continuum.

for the 30 fs pulse and peak intensity of 5 X 10" W/cm?2.
At short times, the spectrum develops symmetrically
around gy = 40 eV as expected for weak fields. Until the
maximum of the pulse arrives, the spectrum remains nearly
symmetric, but its maximum continuously shifts to higher
energies. Importantly, strong modulations of the intensity
start to develop in the spectrum only after the maximum of
the pulse has passed. This will be explained below.

So far, we discussed the spectra computed exactly. Now,
we would like to interpret the findings by introducing
approximations that allow us to arrive at explicit analytic
expressions and proven to be surprisingly accurate. In the
local approximation [25,26], Eq. (2a) reads

iay () = (A - gr) (a0, 3)

Here, the real term, Ag?(t), is nothing but the ac Stark shift
of the energy of the ground state immersed into the dressed
continuum. As usual, this shift follows the intensity enve-
lope of the field [18], i.e. g2(#). Derivations of the expres-
sion for A can be found, e.g. in [18], and in the present case
it explicitly reads (without using the RWA)
2 ( 1 1 )
+ ,
IP+e—w IPtetw

_ dng
A=-P [ae|®
4

where P stands for the principal value of the integral. In the
RWA approximation, the second term on the rhs of Eq. (4)

5x10"° W/em® |-

|
it
I

.\‘{w‘

e

I
i

Intensity (arb. units)

FIG. 2 (color online). Time evolution of the photoelectron
spectrum computed exactly for the hydrogen atom exposed to a
Gaussian-shaped pulse of 30 fs duration, of carrier frequency
w = 53.6057 eV, and peak intensity of 5X 10> W/cm?. At
very early times, the spectrum starts to develop symmetrically
around the central electron energy of g, = 40 eV. At later times,
but before the maximum of the pulse arrives, the maximum of the
spectrum moves to higher electron energies (see the spectrum
computed at —10 fs). When the pulse arrives (the time O fs corre-
sponds to the pulse maximum), the spectrum is not any more
symmetric but still does not possess intensity modulations. The
first modulations start to show up in the spectrum only after the
pulse maximum (see the spectrum computed at + 10 fs) has arrived.
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is neglected. The value of A is proportional to the peak
intensity, A ~ £ ~ I, and it is essentially nonzero owing to
the energy dependence of the dipole matrix element d.

The imaginary term — £T'g?(¢) in Eq. (3) describes the
losses of the population of the ground state by the ioniza-
tion into all final electron continuum states |Fe). I" can be
obtained from A in Eq. (4). The explicit expression for I
was obtained in [21] in the local and RWA approximations
and in the present case it reads

2

I'=2n %dSOEO (5)

Eq. (5) is also valid without using the RWA, since the
second term in the energy integral (4) possesses no pole.
The decay rate I' is also responsible for the additional
broadening of the photoelectron peaks beyond the width
given by the pulse intensity envelope.

Equation (3) can be solved explicitly

a,(t) — e(—iA—F/Z)J(t)’ (6)

where J(t) = [* g*(t)dt’ grows smoothly with time. We
find that the result (6) is in excellent agreement with the
exact calculations. It also simplifies greatly the computa-
tion of the spectrum. As it stands, a, () in Eq. (2b) can be
expressed as an integral of a,;(¢) [19,21]

1 . t o
a.(t) = —i{idsgo}e_“s’[ g(a, (e dt!,  (7)

where we introduced the abbreviation 6 = IP + &€ — w =
&g — gg, which is the electron energy detuning from g.
Using now the explicit expression (6) makes the computa-
tions of a.(f) and of the spectrum o(g) = |a,(+00)|?
rather straightforward.

The photoelectron spectrum computed in the local
approximation is depicted in the upper panel of Fig. 3.
The ac Stark shift A = 0.26 eV and the decay rate I' =
0.044 eV computed via the above equations (4) and (5) have
been utilized in the numerical calculations. It is seen that the
spectrum calculated in the local approximation (solid curve)
describes very well the exact spectrum (open circles).

Due to the success of the local approximation, we are
able to gain deeper insight into the origin of the interfer-
ence effects leading to the intensity modulation in the
spectrum by evaluating analytically a,(f). For this purpose,
we notice that the integrand in Eq. (7) contains a rapidly
oscillating factor exp[i6¢ — iAJ(¢')] that is multiplied by a
smoothly varying function. The main contributions to the
integral stem from the times at which the phase ®(¢) =
8t — AJ(r) is stationary [27], i.e. @ = 0. The resulting
stationary phase condition, Ag?(¢,) = &, has a transparent
physical meaning. It defines the time #,(¢) at which the
energy of the ground state, continuously shifted by the ac
Stark effect, moves across the energy position & of the
dressed continuum state (6 = & — g). For any pulse, there
are at least two stationary points for each value of &: one,
t,(g), when the pulse is growing, and another, £,(¢), when
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FIG. 3 (color online). Upper panel: The photoelectron spec-
trum of the hydrogen atom exposed to a Gaussian-shaped pulse
of 30 fs duration, carrier frequency w = 53.6057 eV, and peak
intensity 5 X 105 W/cm? computed exactly (open circles)
compared with the spectrum computed in the local approxima-
tion (solid curve) with the quantities I'=0.044 eV and
A = 0.26 eV. Lower panel: The spectrum obtained in the sta-
tionary phase approximation via Eq. (8) with the same parame-
ters (solid curve). The two individual contributions to the
spectrum from the negative and positive times ¢, = *t,(g) =
+714/In[A/(e — g3)]/2 describing in Eq. (8) the contributions
when the pulse arrives and expires, respectively, are shown by
broken curves. The energy-dependent interference term in
Eq. (8) is proportional to cos{—2(s — gy)t; — A[J(—1;) —
J(+1)] — w/2}. In the energy interval & — gy € [0, A] for
which a stationary phase can be found, its argument accumulates
a phase of AJ(+00), which for a Gaussian pulse is equal to
A7ym/2. For the present parameters, the interference term
accumulates a phase of 14.85 = 2.36 X 27 rad, and, thus, the
spectrum exhibits around two and a half oscillations of the
intensity profile as seen in the figure.

it decreases. For a Gaussian pulse there are exactly two
times, 1,(g) = —1,(e).

By collecting in the integral (7) these two main contri-
butions at z;, = *¢,(g), we obtain the following explicit
approximate expression for the spectrum

ds EO
2

; 2
S glt)e MW dPm=T/AT " (8)

t,==*1,(g)

o(e) =

The additional phase factors * 7 result from higher terms
in the expansion of the phase ®(z) around the stationary
points * ¢, (g) computed for the Gaussian pulse. The photo-
electron spectrum evaluated via Eq. (8) is depicted in the
lower panel of Fig. 3 (solid curve). It is illuminating to see
that an explicit simple expression reproduces nicely the
exact spectrum (open circles in the upper panel of the
figure) which is complicated to compute. The individual
contributions to the spectrum of the two terms in the
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expression (8) are smooth and rather boring (broken curves
in the lower panel of the figure).

Equation (8) allows one to uncover the physical origin of
the strong modulations in the photoelectron spectrum.
These are the results of the coherent superposition of two
photoelectron waves emitted with the same kinetic energy
at two different times. A cartoon visualizing this dynamic
interference is shown in Fig. 4. This new physical effect
causes enormous qualitative changes in the photoelectron
spectrum which can easily be verified experimentally.
Importantly, the interferences vanish if the ac Stark shift
in the continuum vanishes (i.e., if A vanishes). Then, there
are no stationary points along the pulse. We would like to
stress that the dynamic interference can be controlled by
the shape of the pulse envelope and is influenced by the
choice of the carrier frequency. We are convinced that
dynamic interference is a universal effect in ionization
processes by high-frequency strong laser pulses and its
experimental investigation is feasible. In the following,
we address these issues in some detail.

The predicted phenomenon also persists in other sys-
tems with more electrons. In the hydrogen atom discussed
above, the residual ion does not posses electrons and,
therefore, the dynamic interference is governed by the ac
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FIG. 4 (color online). The intense laser pulse of sufficient high
frequency to ionize the system by one-photon absorption induces
a time-dependent ac Stark shift of the ground state of the system.
Because of this dynamic shift, the photoelectron emitted along
the pulse envelope has at every moment ¢ predominantly a
specific kinetic energy & which is determined by that ¢ (at a
given time ¢, the phase contributing to the integrand in Eq. (7) is
stationary at € = g, + g2(¢)A, for details see text). Owing to the
fact that the pulse envelope first grows and then falls, there are
for a Gaussian pulse exactly two times (indicated as ¢~ and ¢* in
the figure) at which the emitted electron wave has the same
energy &. These two waves emitted with a time delay with
respect to each other interfere. This dynamic interference gives
rise to the strongly modulated intensity distribution of the photo-
electron spectrum seen in Figs. 1-3. The dynamic interference
can be controlled by the intensity, duration, carrier frequency,
and shape of the pulse. A pulse envelope with more than one
maximum leads to more than two waves that interfere and higher
laser intensity to larger ac Stark shift A and to more oscillations
of the spectrum.

Stark shift g(f)A which is a property of the ground state in
the field. If the ion produced by photoionization does
posses electrons, then this ion is obviously also subject to
an ac Stark shift g?(f)A,. In this case, the dynamic
interference pattern in the spectrum is governed by the
total ac Stark shift g?(f)Ar, where Ar, = A — A,
[28]. As the ion is usually harder to ionize than the neutral
system, one can expect that Ar,, will be substantial even if
both A and Ay, have the same sign. Moreover, depending
on the photon energy w, the shifts A and Ay, can have
different signs, enhancing interference effects (see an ex-
plicit example in [28]). In many-electron systems, several
electronic shells can be subject to the ionization, and
different ionic states can be produced. Each ionic contin-
uum will contribute to the shift of the ground electronic
state leading all together to a final unique value of A at the
carrier frequency w. In general, different ionic states |F,)
will experience different ac Stark shifts g(r)Ag,. The
dynamic interference pattern in each of the partial electron
spectra is determined by different total shifts Ag =A—

fon [28], and one can expect dissimilar dynamic interfer-
ence patterns in different partial photoelectron spectra.
Experimental investigations of dynamic interference will
be possible, in particular, if the studied ionic thresholds are
not too close to each other, i.e., if the resulting partial
spectra do not overlap. The ac Stark shift scales also with
the probability to ionize the system. As photoionization
cross sections usually decrease with the photon energy, the
shift will be larger for frequencies w that are not too far
from the ionization threshold. In general, one can expect
particularly large shifts, and, hence, more pronounced
interference patterns, in systems with cross sections that
vary strongly with the photon energy, e.g., in the vicinity of
a shape resonance.

To demonstrate the feasibility of experiments on dynamic
interference, we discuss the present status of FEL facilities.
The currently operating FEL at FLASH [15] generates soft
x-ray radiation in the energy range of 26-180 eV with flux
of about 10'3 photons per pulse with durations of 10-70 fs
[29]. Combined with appropriate focusing optics, peak irra-
diance levels of more than 10'® W /cm? can be achieved at
present [30]. So far, the SASE FEL sources do not produce
monochromatic radiation, and their pulses consist of many
spikes with randomly fluctuating properties. The impact of
these problems on the experimental output has been studied,
e.g., in Ref. [31]. Nevertheless, the pulse properties at
FLASH are continuously improving, and an average
temporal coherence of 3-6 fs can already be achieved
[32]. Moreover, several new techniques have been proposed
for improvement [33], such as the selection of a single
ultrashort radiation spike [34]. In addition, the recently
tested FEL facility FERMI at Elettra [35] operates in
single-mode, providing coherent pulses (without spikes)
with durations of 30 to 100 fs in the photon energy range
of 12 to 413 eV, and it is expected to provide an unprece-
dented flux of about 10'* photons per pulse. Concluding, the
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pulse durations, photon energies, temporal coherence, and
peak intensities necessary for experiments on dynamic in-
terference are available at present.

In conclusion, intense high-frequency pulses give rise
to a strong ac Stark effect in the continuum, which, in
turn, modifies the ionization process dramatically. The
effects are universal and can be verified experimentally
by current techniques. Whenever matter is exposed to
intense pulses, like in FEL experiments, ionization takes
place, and the ac Stark effects in the continuum and the
resulting dynamic interference will come into play. They
will be essential for understanding the experimental re-
sults. The effects are thus both fundamental for light-
matter interaction and of practical importance for the
analysis of FEL experiments.

We thank A.I. Kuleff for many valuable discussions.

APPENDIX.—In this Appendix, we discuss how the full
calculations were done. We have numerically solved ex-
actly the system of equations that accounts for the interac-
tion of all essential and nonessential electronic states of
hydrogen with the laser pulse without employing the rotat-
ing wave approximation. For the peak intensities consid-
ered here, the effect essentially stems from the quantum
motion of the electron eigenstates restricted to ns and nd
Rydbergs with n = 6, mp Rydbergs with m = 16, and, of
course, € p continuum with € = 100 eV. Let us designate
the time-dependent amplitudes for the population of the
even ns/nd states by a,(t), and for the odd mp/ep states
by a,(z). The system of equations of motion of these states
in the presence of the pulse reads

i0.(0) = B, (1) + (2@ )gie™ + e, 0

odd

i, (1) = E,a,(1) + Z(

even

gt + e a0

(AD)

with boundary conditions a;,(—o0) = 1 and a;,,(—00)=0
for all other amplitudes. The continuous spectrum was
discretized as |Fe) = |Fegy) - \/Ae,, where |Fe;) repre-
sents the state in the continuum interval of Ag; centered
around the electron energy &;. The energy steps Ag;, were
chosen linear with respect to /€ and concentrated symmet-
rically around the central electron energy &,. The conver-
gence of the solution with respect to the electron eigenstates
included, of the integration over time and of the discrete
representation of the continuous energy, has been ensured.
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