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We compute initial conditions in heavy ion collisions within the color glass condensate framework by

combining the impact parameter dependent saturation model with the classical Yang-Mills description of

initial Glasma fields. In addition to fluctuations of nucleon positions, this impact parameter dependent

Glasma description includes quantum fluctuations of color charges on the length scale determined by the

inverse nuclear saturation scale Qs. The model naturally produces initial energy fluctuations that are

described by a negative binomial distribution. The ratio of triangularity to eccentricity "3="2 is close to

that in a model tuned to reproduce experimental flow data. We compare transverse momentum spectra and

v2;3;4ðpTÞ of pions from different models of initial conditions using relativistic viscous hydrodynamic

evolution.
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A large uncertainty in the hydrodynamical description
of ultrarelativistic heavy ion collisions is our imperfect
knowledge of multigluon states in the nuclear wave func-
tions and the early time dynamics of gluon fields after the
collision. In heavy ion collisions, studies of observables
sensitive to harmonics of hydrodynamic flow distributions
provide constraints both on the low shear viscosity of the
quark-gluon plasma (QGP) and the initial state dynamics
[2–9]. This situation is analogous to studies of the cosmic
microwave background [1], wherein inhomogeneities in
the observed power spectrum are sensitive to primordial
quantum fluctuations.

An ab initio framework for multiparticle production is
the color glass condensate (CGC) [10] wherein the initial
state dynamics is described by flowing Glasma gluon fields
[11,12]. There are several sources of quantum fluctuations
that can influence hydrodynamic flow on an event-by-event
basis. An important source of fluctuations, generic to all
models of quantum fluctuations, are fluctuations in the
distributions of nucleons in the nuclear wave functions.
In addition, there are fluctuations in the color charge dis-
tributions inside a nucleon. This, combined with Lorentz
contraction, results in ‘‘lumpy’’ transverse projections of
color charge configurations that vary event to event. The
scale of this lumpiness is given on average by the nuclear
saturation scale Qs which corresponds to distance scales
smaller than the nucleon size [13]. For each such configu-
ration of color charges, the quantum chromodynamics
(QCD) parton model predicts dynamical event-by-event
fluctuations in the multiplicities, the impact parameters
and the rapidities of produced gluons [14].

All these sources of fluctuations are captured in the CGC
Glasma flux tube picture. The relevant feature of this
scenario is that long range rapidity correlations from the
initial state wave functions, coherent over 1=Qs in the
transverse plane, are efficiently transmitted into hydrody-
namic flow of the final state quark-gluon matter [15,16].

Recently, Monte Carlo Glauber-type models (MC-
Glauber) and Monte Carlo implementations of the
Kharzeev-Levin-Nardi model (MC-KLN) [17,18] have
been compared to experimental data on elliptic and trian-
gular moments of the flow distribution. While both types of
models treat fluctuations in nucleon positions identically,
the Glauber model implementations do not specify a
mechanism for multiparticle production which would con-
strain the initial energy density distribution. MC-Glauber
initial conditions [7,19] can be tuned to reproduce data on
both elliptic and triangular flow from RHIC and the LHC.
The MC-KLN model is motivated by the CGC with
approximations that will be discussed further below. It
requires larger values of the viscosity to entropy density
ratio (�=s) relative to the Glauber model values to describe
elliptic flow data. This however leads it to underpredict
triangular flow data.
Odd flow harmonics are entirely driven by fluctuations; it

is therefore essential to have a realistic description of quan-
tum fluctuations in multiparticle production to properly
describe the final state dynamics. Towards this end, we
will consider in this Letter the impact parameter dependent
saturation model (IP-Sat) [20,21] to determine fluctuating
configurations of color charges in two incoming highly
energetic nuclei. This model is formally similar to the clas-
sical CGC McLerran-Venugopalan (MV) model of nuclear
wave functions [22], but additionally includesBjorken x and
impact parameter dependence through eikonalized gluon
distributions of the proton that are constrained [23] by
HERA inclusive and diffractive eþ p deeply inelastic scat-
tering (DIS) data [24]. Most importantly, the model is in
excellent agreement with data on n-particle multiplicity
distributions in pþ p collisions at RHIC and the LHC and
in Aþ A collisions at RHIC [25], an essential requirement
for microscopic models. The MC-KLN model does not
contain these features; a scheme to introduce fluctuations
in the model has only been discussed recently [26].
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The color charges�aðx�;x?Þ in the IP-Sat/MVmodel act
as local sources for small x classical gluon Glasma fields.
These are determined by solving the classical Yang-Mills
(CYM) equations ½D�; F

��� ¼ J�, with the color current

J� ¼ ����AðBÞðx�;x?Þ generated by a nucleusA (B) mov-

ing along the xþ (x�) direction [27]. The solution in light
cone gaugeAþðA�Þ ¼ 0 are the pure gauge fields [22,28,29]

Ai
AðBÞðx?Þ ¼ i

g VAðBÞðx?Þ@iVy
AðBÞðx?Þ and A�ðAþÞ ¼ 0.

Here, VAðBÞðx?Þ ¼ P expð�ig
R
dx� �AðBÞðx�;x?Þ

r2
Tþm2 Þ is a path

ordered Wilson line in the fundamental representation,
where the infrared regulatorm (of order�QCD) incorporates

color confinement at the nucleon level.
The initial condition for a heavy ion collision at time

� ¼ 0 is given by the solution of the CYM equations in
Schwinger gauge A� ¼ 0, a natural choice because it in-
terpolates between the light cone gauge conditions of the
incoming nuclei. It has a simple expression in terms of the
gauge fields of the colliding nuclei [11]:

Ai ¼ Ai
ðAÞ þ Ai

ðBÞ; A� ¼ ig

2
½Ai

ðAÞ; A
i
ðBÞ�; (1)

and @�A
i ¼ 0, @�A

� ¼ 0. In the limit � ! 0,
A� ¼ �E�=2, with E� the longitudinal component of the

electric field [30]. At � ¼ 0, the only nonzero components
of the field strength tensor are the longitudinal magnetic
and electric fields, which can be computed nonperturba-
tively. They determine the energy density of the Glasma at
� ¼ 0 at each transverse position in a single event [12,31].
The Glasma distribution computed from the CYM equa-
tions [32] is matched event-by-event to viscous relativistic
hydrodynamics [5,6] to compute harmonics of the flow
distributions.

Wewill now discuss details of the computation. Nucleon
positions in the nucleus are sampled from a Fermi distri-
bution. The saturation scale Q2

s;ðpÞðx;b?Þ is determined

from the IP-Sat dipole cross section for each nucleon,
where b? is the impact parameter relative to each nucle-
on’s center. The color charge squared per unit transverse
area g2�2ðx;b?Þ is proportional to [34] Q2

s;ðpÞðx;b?Þ. For
the nucleus, g2�2

Aðx;x?Þ is obtained [36] by adding the
individual nucleon g2�2 at the same x and transverse
position x? in the nucleus.

The lattice formulation of the Glasma initial conditions
in Eq. (1) was first given in [37]. On a transverse lattice,
random color charges [38] �aðx?Þ are sampled from

h�a
kðx?Þ�b

l ðy?Þi ¼ �ab�kl�2ðx? � y?Þ g
2�2

Aðx?Þ
Ny

; (2)

where the indices [39] k, l ¼ 1; 2; . . . ; Ny represent a dis-

cretized x� coordinate [35]. For the large nuclei we con-
sider the use of such local Gaussian color charge
distributions is a valid approximation [40]. The path
ordered Wilson line is discretized as

VAðBÞðx?Þ ¼
YNy

k¼1

exp

�
�ig

�AðBÞ
k ðx?Þ
r2

T þm2

�
: (3)

To each lattice site j we assign two SUðNcÞ matrices VðAÞ;j
and VðBÞ;j, each of which defines a pure gauge configuration
with the link variables Ui

ðA;BÞ;j ¼ VðA;BÞ;jV
y
ðA;BÞ;jþêi

, where

þêi indicates a shift from j by one lattice site in the i ¼ 1,
2 transverse direction. The link variables in the future
lightcone Ui

j, are determined from solutions of the lattice

CYM equations at � ¼ 0,

trfta½ðUi
ðAÞþUi

ðBÞÞð1þUiyÞ�ð1þUiÞðUiy
ðAÞ þUiy

ðBÞÞ�g¼0;

(4)

where ta are the generators of SUðNcÞ in the fundamental
representation (The cell index j is omitted here). The
N2

c � 1 equations (4) are highly nonlinear and for
Nc ¼ 3 are solved iteratively.
The total energy density on the lattice at � ¼ 0 is given by

"ð� ¼ 0Þ ¼ 2

g2a4
ðNc � Re trUhÞ þ 1

g2a4
trE2

�; (5)

where the first term is the longitudinal magnetic energy,

with the plaquette given by Uj
h ¼ Ux

jU
y
jþx̂U

xy
jþŷU

yy
j . The

explicit lattice expression for the longitudinal electric field
in the second term can be found in Refs. [37,42]. We note
that the boost-invariant CYM framework neglects fluctua-
tions in the rapidity direction. Anisotropic flow at midra-
pidity is dominated by fluctuations in the transverse plane
but fluctuations in rapidity could have an effect on the
dissipative evolution; the framework to describe these ef-
fects has been developed [43] and will be addressed in
future work. Other rapidity dependent initial conditions
are discussed in Ref. [44].
In Fig. 1 we show the event-by-event fluctuation in the

initial energy per unit rapidity. The mean was adjusted to
reproduce particle multiplicities after hydrodynamic evo-
lution. This and all following results are for Auþ Au
collisions at RHIC energies (

ffiffiffi
s

p ¼ 200AGeV) at midra-
pidity. The best fit is given by a negative binomial distri-
bution (NBD), as predicted in the Glasma flux tube
framework [45]; our result adds further confirmation to a
previous nonperturbative study [46]. The fact that the
Glasma NBD distribution fits pþ p multiplicity distribu-
tions over RHIC and LHC energies [25] lends confidence
that our picture includes fluctuations properly.
We now show the energy density distribution in the

transverse plane in Fig. 2. We compare to the MC-KLN
model and to an MC-Glauber model that was tuned to
reproduce experimental data [5,9]. In the latter, for every
participant nucleon, a Gaussian distributed energy density
is added. Its parameters are the same for every nucleon in
every event, with the width chosen to be 0.4 fm to best
describe anisotropic flow data. We will also present results
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for a model where the same Gaussians are assigned to each
binary collision. The resulting initial energy densities
differ significantly. In particular, fluctuations in the impact
parameter dependent Glasma (IP-Glasma) occur on the
length scale Q�1

s ðx?Þ, leading to finer structures in the
initial energy density relative to the other models. As noted
in [26], this feature of CGC physics is missing in the MC-
KLN model.

We next determine the participant ellipticity "2 and
triangularity "3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective "n
[47], which makes these eccentricities a good indicator of
what to expect for vn. We define

"n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihrn cosðn�Þi2 þ hrn sinðn�Þi2p

hrni ; (6)

where h�i is the energy density weighted average. The
results from averages over �600 events for each point
plotted are shown in Fig. 3. The ellipticity is largest in
the MC-KLN model and smallest in the MC-Glauber
model with participant scaling of the energy density
(Npart). The result of the present calculation lies in

between, agreeing well with the MC-Glauber model using
binary collision scaling (Nbinary). We note, however, that

this agreement is accidental; binary collision scaling of
eccentricities, as shown explicitly in a previous work
applying average CYM initial conditions [48], does not
imply binary collision scaling of multiplicities.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact
parameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There is
no parameter dependence of eccentricities and triangular-
ities in the IP-Glasma results shown in Fig. 3. It is reassuring

that both are close to those from the MC-Glauber model
because the latter is tuned to reproduce data even though it
does not have dynamical QCD fluctuations.
We have checked that our results for "2, "3 are insensi-

tive to the choice of the lattice spacing a, despite a loga-
rithmic ultraviolet divergence of the energy density at
� ¼ 0 [49]. They are furthermore insensitive to the choice
of g, the ratio g2�=Qs, and the uncertainty in Bjorken x at
a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal pions
after evolution using MUSIC [5,50] with boost-invariant
initial conditions and shear viscosity to entropy density
ratio �=s ¼ 0:08. Average maximal energy densities of all
models were normalized to assure similar final multiplic-
ities. More pronounced hot spots, as emphasized previ-
ously [51], affect the particle spectra obtained from flow,
leading to harder momentum spectra in the present calcu-
lation compared to MC-KLN and MC-Glauber models.

FIG. 2 (color online). Initial energy density (arbitrary units) in
the transverse plane in three different heavy ion collision events:
from top to bottom, IP-Glasma, MC-KLN, and MC-Glauber [9]
models.
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FIG. 1 (color online). The IP-Glasma event-by-event distribu-
tion in energy for b ¼ 9 fm on the lattice compared to different
functional forms. The negative binomial distribution (NBD)
gives the best fit.
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Differences in v2ðpTÞ and v3ðpTÞ are as expected from the
initial eccentricities of the different models.

As discussed at the outset, MC-KLN fails to describe
experimental v2 and v3 simultaneously [7,19] because of
its small ratio "3="2. The fluctuating IP-Glasma initial
state presented here has a larger "3="2, closer to that of
the MC-Glauber model that is tuned to describe experi-
mental vn reasonably well [9].

In summary, we introduced the IP-Glasma model of
fluctuating initial conditions for heavy ion collisions.
This model goes beyond the MC-KLN implementation
by using CYM solutions instead of k?-factorization and
including quantum fluctuations on the dynamically gener-
ated transverse length scale 1=Qs. Further, unlike MC-
KLN, its parameters are fixed by HERA inclusive and
diffractive eþ p DIS data. At fixed impact parameter,
this model naturally produces NBD multiplicity fluctua-
tions that are known to describe pþ p and Aþ A multi-
plicity distributions, and its ratio of initial triangularity to
eccentricity is more compatible with experimental data of
harmonic flow coefficients.

Looking forward, an improved matching to the hydro-
dynamic description, starting at time �0, can be achieved

by including classical Yang-Mills evolution of the system
up to this time. However, we do not expect a significant
modification of the presented results for "2 and "3 as
suggested by previous work [48]. Further refinements
include treating color charge correlations encoded in the
JIMWLK hierarchy for improved rapidity and energy
distributions [52,53] and eliminating arbitrariness in
choice of thermalization time by an ab initio treatment of
thermalization [43,54–56]. Detailed studies of higher
flow harmonics using dissipative hydrodynamic simula-
tions and comparison to experimental data will allow
for further discrimination between different initial condi-
tions. Specifically, it would be interesting to see if these
comparisons are able to distinguish between our Glasma
flux tube scenario with granularity on the energy dependent
scale 1=Qs and other nonperturbative string scenarios
which share common features such as NBD fluctuations
but are sensitive to 1=�QCD [44,57,58].
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S. Jeon, T. Lappi, L. McLerran, and Z. Qiu for helpful
discussions. B. P. S. and R.V. are supported by
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support from a BNL ‘‘Lab Directed Research and
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FIG. 4 (color online). Thermal �þ transverse momentum
spectra (upper) and anisotropic flow coefficients v2, v3, and v4

as functions of pT (lower) from IP-Glasma initial conditions
(solid), MC-KLN (dashed), MC-Glauber using participant scal-
ing (dotted) and binary collision scaling (dash-dotted).
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