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We study the behavior of interacting self-propelled particles, whose self-propulsion speed decreases

with their local density. By combining direct simulations of the microscopic model with an analysis of the

hydrodynamic equations obtained by explicitly coarse graining the model, we show that interactions lead

generically to the formation of a host of patterns, including moving clumps, active lanes, and asters. This

general mechanism could explain many of the patterns seen in recent experiments and simulations.
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Collections of self-propelled (SP) particles provide the
most common realization of active matter, the study of
which constitutes a rapidly growing area of research [1].
Examples of SP particles are bacteria, cells [2], and actin
filaments ‘‘walking’’ on a carpet of immobilized molecular
motors [3].

The term ‘‘active’’ is used to contrast these systems with
their passive counterparts, such as solutions of diffusing
Brownian particles. Active systems exhibit a much richer
physics, in particular having a far greater tendency to form
patterns. For instance, bacterial colonies of E. coli or S.
typhimurium growing in the lab can self-organize into
crystalline or amorphous arrangements of high-density
bacterial clumps [4], while biofilms form even more elabo-
rate patterns such as microbial honeycombs, essentially
hexagonal lattices of low-density voids [5]. Similarly, actin
in high density motility assays [3] organize in moving
spots, stripes, and traveling waves.

What is the mechanism underlying the formation of these
‘‘active patterns?’’ One may expect that, as the underlying
constituents of each system are so different, the answer to
this question should also be system-specific. If we are to
capture all details of a given active pattern, this is indeed
likely to be the case. Yet, a fascinating possibility is that
there may exist some generic origin of many of these
patterns, stemming from a few universal key features of
activity, linked to its inherent nonequilibrium nature. In
some cases, pursuing such minimal descriptions can be
very rewarding. Awell-known example is the hydrodynamic
theory of flocking proposed by Toner and Tu in [6], which
was inspired by the ‘‘agent-based’’ model of Vicsek et al.
[7]. The latter studied the dynamics of an ensemble of SP
particles subjected to aligning interactions, whose ultimate
origin may be hydrodynamic or collision-dominated in the
cases of bacteria and actin filaments, or more complex for
bird flocks or fish schools. Universal features successfully
predicted by generic flocking models are spontaneous mo-
tion [6–8], giant density fluctuations [9,10], and the emer-
gence of complex spatiotemporal active patterns [10,11].

The original Vicsek model considers point particles of
fixed speed and includes no interactions between them
other than a rule that aligns their velocities. Recently, focus
has shifted onto specific models where additional interac-
tions are included, most commonly steric repulsion [12–
18]. Our aim here is to develop a more generic model for
interacting SP particles. Interactions are incorporated in
our model by assuming that the motility of the SP particles
is a decreasing function of their local density [19]. One
may envisage several physical mechanisms responsible for
a decay of the propulsion velocity with density: here we
highlight just two. First, such a slowing down may arise
due to local crowding and steric hindrance, just as in
[13,14,16,17]. An alternative mechanism can be provided
by biochemical signaling such as quorum sensing in bac-
terial colonies, as recently explored theoretically [20] and
experimentally [21]. This second mechanism may lead to
slowdown even in dilute suspensions. Our work describes
the results of simulations of a microscopic SP particles
model with both interactions and alignment rule, the deri-
vation of the corresponding hydrodynamic description of
the model in terms of a density and a polarization field, and
an analysis of the continuum theory. It therefore provides a
direct bridge between microscopic and continuum models,
which allows us to identify universal mechanisms driving
pattern formation in interacting SP particles. As we shall
see, interactions lead to an even larger repertoire of pat-
terns in active particle suspensions than obtained in con-
ventional Vicsek models. These include moving clumps,
lanes, and asters (i.e., inward pointing defects of the po-
larization field with topological charge þ1), and qualita-
tively match the patterns found experimentally, e.g., in [3].
We consider a modified version of the Vicsek model [7],

where N particles in a box of size L2 (hence, with overall
mean density �0 ¼ N=L2) interact via a pairwise aligning
forcing, which simplifies the coarse graining of the micro-
scopic model. In 2D the position ri and direction, identified
by an angle �i (or a vector e�i), of the ith particle evolve

according to

PRL 108, 248101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

0031-9007=12=108(24)=248101(5) 248101-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.248101


_r i ¼ ve�i ;
_�i ¼ �

XN
j¼1

Fð�j � �i; rj � riÞ þ
ffiffiffiffiffiffi
2�

p
~�iðtÞ; (1)

where � and � describe strength of alignment and fluctua-
tions respectively, and ~�ðtÞ is a Gaussian white noise with
zero mean and unit variance. F controls the alignment
interactions between the spins. For simplicity, we choose
Fð�; rÞ ¼ sinð�Þ=�R2 if jrj< R (hereafter we restrict to
R ¼ 1) and 0 otherwise. This simple choice for F enforces
polar alignment of the SP particles and will allow us to
make progress anaytically, but we expect our results to
extend to far more general forms of polar alignment. In the
v ! 0 limit, our model is an off-lattice analogue of the XY
model for a ferromagnet; hence, we call it the flying XY
model. Last, a density-dependent velocity is introduced in
the model by stipulating that v depends on the number of
particles nwithin a given radius Rn, as vðnÞ¼v0e

��nþv1,
where v0 � v1 > 0 are the dilute and crowded limiting
velocities respectively, and � > 0 controls the decay of the
motility decreases with increasing density. Hereafter, we
restrict to Rn ¼ R.

Figure 1(a) shows a representative phase diagram of the
flying XY model in the ð�; �Þ plane for N ¼ 3000 [22]. For
small �, when v is quasiconstant, the phases observed are
the same as those in the literature on flocking models
[7,10]. Namely, at high � we find a disordered, homoge-
neous state [region c in Fig. 1(a)], followed by a polarly
ordered phase with high density stripes [named stripy
phase, b, in Fig. 1(a)] below a critical noise value. For
even lower �, we observe a ‘‘fluctuating flocking state’’
(region a) with polar order and large density fluctuations—
this state is close to the one described in Refs. [10,11], and
we do not discuss it further here. All these phases are
expected by analogy with the Vicsek model.

Above a critical value �cð�Þ, new patterns appear. Due to
the density-dependent motility, the SP particles cluster via

a self-trapping mechanism through which they assemble
and slow down, creating a positive feedback loop akin to
the one in [20]. This process leads to the formation of high-
density clumps which slowly coarsen towards a fully
phase-separated steady state. The Vicsek-like alignment
tendency greatly affects this instability. On one hand, the
critical value �cð�Þ decreases almost to zero with decreas-
ing �. Furthermore, the presence of polar order promoted
by the alignment changes the nature of the clusters. In
Fig. 1(a), we identify at least three distinct patterns, of
which snapshots are shown in Fig. 1(b). When � is small,
rather than structureless dots, the clusters show an orienta-
tional order and move coherently: they form ‘‘moving
clumps’’ [pattern d(i) in Fig. 1]. For low � and large �
the moving clumps merge into bands, or lanes [labelled as
d(ii)]—within these, however, particles move parallel
rather than perpendicular to the band, in contrast with the
� ! 0 stripy phase. Although we cannot rule out that the
lane and moving clump ‘‘phases’’ may merge in the ther-
modynamic limits, they appear as distinct up to the largest
system we simulated, with N ¼ 48 000 [23] [and � as in
Fig. 1(a)]. Lanes are somewhat reminiscent of the
‘‘streaks’’ of actin filaments observed in [3]—it would be
interesting to compare the dynamics of pattern formation
in experiments and simulations to probe how similar the
two really are. Finally, in the disordered, high � phase, the
clusters instead diffuse randomly and are, on average, sta-
tionary. Here, a temporal average of the particle orientation
patterns shows that the clusters are asters (the aster phase is
labeled as e in Fig. 1). However, as discussed in greater
detail below, the orientation in the aster is nonstandard:
particles point towards its center at the core, but they
coherently point outwards in its periphery. We stress that
moving clusters, lanes, and asters are not observed either in
the standard Vicsek model [7,10] or in the simulations of
its standard mean field continuum description [11].
To get a better understanding of the pattern formation

process, we now discuss how to coarse grain the micro-
scopic dynamics (1) to obtain a macroscopic description of
the model. On symmetry grounds, there are two candidates
for the hydrodynamic fields: the conserved particle density
� and the local alignment, or polarization, vector P. Note
that ‘‘hydrodynamic’’ here means slowly varying in space
and time—the dynamics of the underlying fluid is not
included in our modeling. Following Refs. [20,24], we
start with the microscopic Eq. (1) and use Itō calculus to
write down a stochastic dynamical equation for the evolu-
tion of fðr; �Þ ¼ P

N
j¼1 �ðr� rjÞ�ð�� �jÞ, the micro-

scopic density of particles at position r with angle �,
which reads

@tfðr; �Þ þ e� � r½vf�

¼ �
@2f

@�2
� @

@�

ffiffiffiffiffiffiffiffi
2�f

p
�� �

@

@�

Z
d�0dr0fðr0; �0Þ

� fðr; �ÞFð�0 � �; r� r0Þ: (2)

FIG. 1 (color online). (A) Phase diagram in the ð�; �Þ plane, for
N ¼ 3000, L ¼ 10, � ¼ 0:16, v0 ¼ 2, and v1 ¼ 0:1. Blue filled
circles on the phase boundary correspond to peaks in the variance
of the particle density, while green squares separate states with
zero and nonzero mean orientation. Phases are labeled as per
discussion in the text. Horizontal and vertical red lines indicate
linear instabilities toward clustering and ordering, respectively.
(B) Snapshots of the stripy (b), aster (e), moving clumps [d(i)],
and lane [d(ii)] patterns. The crosses in A correspond to the
snapshots in B. Particles are color coded by direction, with blue
(darker gray) horizontal and red (lighter gray) vertical.
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The second term on the left-hand side describes familiar
advection, but with one important difference: the velocity
v appears inside the gradient. This is what leads to the
instabilities responsible for the new patterns in the simu-
lations. The interaction term in Eq. (2) differs from other
models of SP particles where the alignment is explicitly
due to ‘‘collisions,’’ and the interaction strength depends
on v [14,25]. Such cases can be recovered by allowing � to
vary with v. To derive mean-field hydrodynamics equa-
tions for the flying XY model, we first drop the noise term,ffiffiffiffiffiffiffiffi
2�f

p
�. Following Bertin, Droz, and Gregoire [25], we

Fourier transform Eq. (2) to get equations of motion for
fk �

R
fðr; �Þeik�d�. Using 2�fðr; �Þ ¼ P

kfke
�ik�

and 2�Fð�; rÞ ¼ P
kFke

�ik�, we obtain a hierarchy of
equations:

@tfk þ @

@x

vfkþ1 þ vfk�1

2
þ @

@y

vfkþ1 � vfk�1

2i

¼ �k2�fk þ i
�k

2�

X
m

fmF�mfk�m; (3)

where all sums run from �1 to þ1. In principle, F is
slightly nonlocal in space so that the second term of the
right-hand side of Eq. (3) should retain a spatial integral.

We are, however, interested in the hydrodynamic, large-
scale, description of the system, a limit in which R is very
small and we assume F to be perfectly local [26]. To obtain
mean-field equations for the hydrodynamic variables, we
approximate the mesoscopic density of particles �ðx; tÞ by
the angular average of the microscopic one, i.e., � � f0.
This can be justified in dense systems [27–29], where
interactions are averaged over many neighbors. In a similar
fashion, we approximate the x and y component of �P by
the real and imaginary part of f1, respectively. By writing
out in full the k ¼ 0 case of Eq. (2), we then find that the
density field obeys the continuity equation

@t� ¼ �r � ðvWÞ; (4)

whereW � �P. To make further progress, we now assume
that we are not too deeply in the ordered phase, so that fð�Þ
is to first order approximation homogeneous; hence, higher
Fourier components (fk for k � 3) may be neglected.
Following [25], we further assume that f2 is a fast variable,

so that _f2 ’ 0 (this requires � � 0). After lengthy but
straightforward algebra, we obtain the following equation
for W,

@tW þ �

16�
ðW � rÞðvWÞ ¼

�
1

2
��� �

�
W � �2

8�
W2W � 1

2
rðv�Þ þ 3�

16�
rðvW2Þ � �

32�
vrW2 � 3�

16�
Wr � ðvWÞ

� �

8�
vWðr �WÞ � �

8�
vðW � rÞW þOðr2Þ: (5)

The second term on the left-hand side of Eq. (5) describes
self-advection of particles and breaks Galilean invariance
[6]. The first two terms on the right-hand side describe the
standard spontaneous symmetry breaking leading to polar
order and flocking for sufficiently small � in the Vicsek
model at � ¼ 0. The third, pressurelike term,� 1

2rðv�Þ, is
the most relevant one in our work, as it is responsible for
the clustering instability observed in Fig. 1 when � � 0.
Higher order terms in r and W have minor effects on
patterns and will be discussed elsewhere. When v is con-
stant, Eq. (5) reduces to that in Ref. [25], albeit with a
different expression for some of the parameters due to
differences in the interaction terms defining the micro-
scopic models [25].

Having written down the mean-field equations of mo-
tion, Eqs. (4) and (5), we can now assess how their pre-
dictions compare with the simulations of the microscopic
model. The continuum theory predicts an order-disorder
transition at �c ¼ 1

2��0. For � > �c there is a stable homo-

geneous disordered state, with � ¼ �0 and W ¼ 0. For
� < �c, the equations yield a homogeneous ordered or
flocking state with � ¼ �0 and W ¼ W0x̂, where we
have chosen the x axis along the direction of broken

symmetry and W0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�ð�c � �Þ=�2

p
. The mean-field

transition at �c does not depend on � and coincides with
that of the equilibrium XY model. The order-disorder
phase boundary predicted by the theory is compared to
its numerical counterpart in Fig. 2(a). We then study
the linear stability of the homogeneous disordered state
at � > �c against spatially inhomogeneous fluctuations. It
is straightforward to show that when � � 0, the homoge-
neous disordered phase becomes unstable for all wave
numbers when vð�0Þ þ �0v

0ð�0Þ< 0. This instability, re-
ferred to as a clustering instability, arises due to the term
� 1

2rðv�Þ in the equation for W. The threshold between

FIG. 2 (color online). (a) Phase boundary for the flyingXY model
when � ¼ 0, showing the critical value of � as a function of �. Blue
(darker gray) points for v ¼ 2:0, red (lighter gray) for v ¼ 0:5.
Inset: data for v ¼ 2:0 for smaller values of �. (b) Phase boundary
for � ¼ 5, � ¼ 0:16. In all cases L ¼ 10 and N ¼ 1000.
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homogeneous and clustered phases found numerically at
large � is close to but below the prediction [(Fig. 2(b)].
This is reasonable, as the linear stability can only access
the spinodal line: fluctuations may trigger phase separation
for lower �.

To go beyond the simple linear stability analysis of the
homogeneous disordered state, account for the effect of the
nonlinear terms, and, hence, explore the range of patterns
compatible with our hydrodynamics equations, we solved
Eqs. (4) and (5) numerically, by means of a standard finite
difference scheme [23]. In order to enhance the stability of
our algorithm, we included a diffusive term Dr2� on the
right-hand side of Eq. (4). Our numerical results show that
all the five patterns, or phases, observed in the microscopic
simulations (fluctuating flocking state, moving stripes and
lanes, static asters, and moving clumps) can be found
within Eqs. (4) and (5)—Fig. 3 portrays a comparison of
the � � 0 patterns. Interestingly, the origin of the atypical
asters can be directly read from Eq. (5). In the steady-state,
low gradient, small W approximation, Eq. (5) reduces to
ð��=2� �ÞW ¼ rð�v=2Þ and rðv�Þ thus acts as an or-
dering field forW. Along the radius of an aster, the density
increases toward the center, whereas the velocity de-
creases. Their product can thus be nonmonotonic, which
makes W change direction, hence the atypical asters seen
in the microscopic simulations. In the continuum simula-

tions, even though r�v can change sign, the presence of
the diffusive terms disallows sharp gradients, and we did
not find parameters for which r�v was dominating. We
could, however, end up with both inward-pointing or
outward-pointing asters, corresponding to phases with
high-density clumps (at small �, shown in Fig. 3(c) or
low-density voids (at larger �, similar to those discussed
in [5], not shown).
We have shown that a density-dependent motility in our

flyingXY model, a close relative of the Vicsekmodel, yields
new patterns in suspensions of SP particles. Such patterns
include moving clumps, lanes, and asters. All these patterns
have experimental counterparts [3–5]. By explicitly linking
the microscopic and coarse-grained mean- field dynamics,
we were able to identify the key ingredients that trigger the
appearance of the new patterns in the ‘‘pressure term’’—
1
2rðv�Þ: when this turns negative, new patterns form.

Importantly, the patterns we see are not very sensitive to
the precise form of vð�Þ. For instance, steric hindrance
results in velocities that typically decrease linearly with
density [29] and would give similar instabilities.
We close with a comparison with other models featuring

patterns similar to ours. Continuum equations for
microtubule-kinesin solutions leading to aster formation
have been proposed in [30]. These included a phenomeno-
logical term �Srð�Þ with S > 0, and � the density of
motors bound to microtubules, which is similar to our
term � 1

2rðv�Þ. In the � ¼ 0 limit, Refs. [11,25] show

that asters are absent if the prefactors in the nonlinear terms
in the continuum equations are obtained via systematic
coarse-graining (however, they do appear if these prefac-
tors are tuned independently [31]).
Finally, Peruani et al. [17] studied a microscopic lattice

variant of the Vicsek model and also found asters and
moving clumps, dubbed traffic jams and gliders. This is
again naturally explained by our theory, as their origin in
[17] lies in the slowdown of particles due to crowding
jamming, which brings up an effective ‘‘pressure term’’
analogous to that in Eq. (5). A density-dependent motility,
induced either by steric hindrance or by crosslinkers be-
tween actin fibers, may also at the basis of the formation of
similar patterns in the actin-walker experiments in [3].
We thank M.R. Evans for useful discussions. M. C.M.
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M. Bär, and H. Chaté, Phys. Rev. Lett. 104, 184502
(2010).

[18] One should further distinguish between collection of steri-
cally interacting SP particles where alignment is imposed
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