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Motivated by recent experiments on vanadium spinels, AV2O4, that show an increasing degree of

electronic delocalization for smaller cation sizes, we study the evolution of orbital ordering (OO) between

the strong and intermediate-coupling regimes of a multiorbital Hubbard Hamiltonian. The underlying

magnetic ordering of the Mott insulating state leads to a rapid suppression of OO due to enhanced charge

fluctuations along ferromagnetic bonds. Orbital double occupancy is rather low at the transition point

indicating that the system is in the crossover region between strong and intermediate-coupling regimes

when the orbital degrees of freedom become disordered.
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The steady interest in frustrated magnets with degener-
ate orbitals is driven by the continuous discovery of un-
usual magnetic and orbital orderings resulting from an
intricate interplay between frustration, lattice distortions,
and electron correlations. A case in point is the family of
vanadium spinels, AV2O4 (A ¼ Cd, Mg, or Zn), whose
magnetic V3þ ions reside on a pyrochlore lattice and
contain two electrons in their t2g 3d-orbitals [1–5]. What

makes this family particularly attractive is the possibility
of tuning the ratio between the electronic hopping, t, and
the intraorbital Coulomb repulsion, U, by changing the
cation size at A sublattice [6].

By using a strong-coupling approach, Tsunetsugu and
Motome found an antiferro-orbital (AFO) order consisting
of alternating dzx and dyz orbitals along both [1, 0,�1] (zx)

and [0, 1, �1] (yz) directions [7]. However, AFO is in-
compatible with the crystal symmetry I41=amd extracted
from neutron scattering (NS) and x-ray diffraction experi-
ments [1–3]. Tchernyshyov [8] proposed that AFO is sup-
pressed by a strong spin-orbit (SO) interaction [8–10].
Although there is no reliable data on the SO coupling for
V3þ ions, free ion measurements [11] and ab initio calcu-
lations [12] indicate that it may be comparable to the
exchange energy. However, recent NS measurements on
MgV2O4 [3] detected a small spin gap and highly disper-
sive magnetic excitations that are at odds with strong SO
coupling [13]. More recent experimental studies of the
AV2O4 family show that none of these compounds
satisfy the phenomenological Bloch’s equation [14],
@ lnTN=@ lnV ’ 3:3, that must hold in the strong-coupling
limit t=U � 1 [6] (TN and V are Néel temperature and
volume). Moreover, the Néel temperature of ZnV2O4 de-
creases with pressure, and transport measurements reveal
that MgV2O4 and ZnV2O4 have small charge gaps [15].
These measurements clearly indicate that a comprehensive
study of the spinel vanadates requires an approach that can

interpolate between the strong- and intermediate-coupling
regimes.
In this Letter, we demonstrate that the larger charge

fluctuations of the intermediate-coupling regime play a
crucial role for suppressing OO in MgV2O4 and ZnV2O4.
The observed magnetic ordering breaks the equivalency
between bonds, and the strong Hund’s coupling results in a
lower energy barrier for ferromagnetic (FM) bonds. Since
the FM bonds form zigzag chains spiraling along the z
direction (see Fig. 1), charge fluctuations become stronger

z

y

x

y

y

x

y

x
x

x
x

y

x
x

x
y

y

x

y

y

x

y

x

x

x y

x

FIG. 1 (color online). Pyrochlore lattice of V3þ ions in AV2O4.
The solid diagonal lines are FM bonds along the zx and yz
directions. These ‘‘strong’’ bonds form zigzag chains described
by �H. The dashed lines are the ‘‘weak’’ AFM bonds that
introduce interchain orbital coupling. The arrows indicate the
spin ordering favored by a combination of the intrachain FM
coupling and interchain AFM coupling induced by bonds ori-
ented along the xy direction. The letters x (for zx) and y (for yz)
indicate the OO that is stable deep inside the Mott regime [7].
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along these chains. We argue that it is essential to keep
double occupied states in the low-energy effective theory
to account for the lower energy barrier of FM bonds. In
fact, we show that double occupied states of isolated zigzag
chains are domain walls of a 1D quantum Ising model.
These domain walls are confined in the orbitally ordered
phase. As t=U increases, the zigzag chain undergoes a
quantum phase transition to a paraorbital (PO) [16] state
via proliferation of domain walls. We find that this tran-
sition takes place at the crossover between the intermedi-
ate- and strong-coupling regimes. This phenomenon
cannot be captured by a strong-coupling approach because
double-occupied states are projected out from the low-
energy Hilbert space.

Wefirst review experimental results onvanadium spinels.
A structural transition occurs at a temperature Ts � 95 K
for A ¼ Cd [4,5], Ts � 95 K for A ¼ Zn [2], and Ts �
65 K for A ¼ Mg [3], which lowers the crystal symmetry
from cubic Fd�3m to tetragonal and leads to uniform flat-
tening of VO6 octahedra with c < a ¼ b. This distortion
leads to a partial ferro-orbital (FO) ordering in which the
lower-energy dxy orbital is occupied at every site, while the

second electron can occupy either the dzx or dyz orbitals.

Antiferromagnetic correlations develop below Ts along
chains parallel to the [1, �1, 0] (xy) directions. However,
3D magnetic ordering only sets in below a lower Néel
temperature due to frustration in the interchain coupling.
The ordering wave vector is q ¼ 2�ð0; 0; 1Þ, and the corre-
sponding spin pattern is ""## along chains parallel to the yz or
zx directions. This ordering leads to zigzag FM chains
spiraling about the z axis (Fig. 1).

The Model.—We start by considering a low-energy t2g
Hamiltonian H ¼ Hcf þHU þHt þHso. The first term,

Hcf ¼ ��
P

jnjxy, describes the crystal field splitting due

to the Jahn-Teller distortion at T < Ts, where njxy is the

electron number for the dxy orbital of site j. We also

assume a value of �> 0 that is large enough to localize
one electron in the dxy orbital. HU contains the terms

originating from the Coulomb repulsion between electrons
in the same ion. When restricted to the njxy ¼ 1 subspace,

HU reads

HU¼X

j;�

½�2JSj� �SjxyþUnj�"nj�#�

þðU�2JÞ X

j;���

nj�"nj�# þU�3J

2

X

j;�;���

nj��nj��

þJ
X

j;���

½dyj�"d
y
j�#dj�#dj�" �dyj�"dj�#d

y
j�#dj�"�: (1)

Here U denotes the Coulomb repulsion between electrons
occupying the same orbital, and J is the Hund’s coupling
constant [17]. �, � ¼ fzx; yzg are orbital indices, while �,
� ¼" , # are spin indices. Finally, nj�� ¼ dyj��dj��,

nj� ¼ P
�nj��, and Sj� ¼ 1

2

P
�;�d

y
j�����dj��, where

� ¼ ð�x; �y; �zÞ is a vector of Pauli matrices. The kinetic
energy terms are

Ht ¼
X

jj0

X

�;�;�

t��
jj0 ðdyj��dj0�� þ H:c:Þ: (2)

We assume that the transfer matrix is diagonal in the t2g
manifold and that the hopping integral is dominated by the
dd� contribution: t��

jj0 ¼ t��
jj0 ��;�.

Finally, the effective SO contribution Hso is obtained by
projecting the original SO interaction, �L � S, onto the
doublet of fdzx; dyzg orbitals [18]:

Hso ¼ i�
X

j�

�z
��ðdyjzx�djyz� � dyjyz�djzx�Þ: (3)

The SO coupling also contains terms like �dyjxy"dj�#, which
mix the dxy with dzx or dyz orbitals. Since these terms are of

order �=�, they will be neglected in the following
discussion.
A single helical chain (� ¼ 0 limit.—)We now consider

a single helical chain that propagates along the z direction
with alternating zx and yz bonds. (We use the short nota-
tion ‘‘� bond’’ for bonds oriented along the � direction,
where � ¼ fxy; yz; zxg) The hopping matrix elements
along each helical chain are tzx;zxj;jþ1 ¼ t and tyz;yzj;jþ1 ¼ 0 for

zx bonds and tyz;yzj;jþ1 ¼ t and tzx;zxj;jþ1 ¼ 0 for yz bonds, while

there is no hopping between dxy orbitals. The resulting

single-chain hopping Hamiltonian is

t
X

j2odd;�

ðdyjþ1zx�djzx� þ dyj�1yz�djyz� þ H:c:Þ: (4)

The total charge in each pair of orbitals connected by a
finite hopping amplitude is conserved for � ¼ 0. This local
U(1) invariance of Hð� ¼ 0Þ makes the model quasiex-
actly solvable. For realistic Hamiltonian parameters, the
ground state of Hð� ¼ 0Þ is always in the fully polarized
subspace S with exactly one electron per bond. The pro-
jection ofHð� ¼ 0Þ onto this invariant subspace is mapped
into a quantum Ising model (QIM),

PSHð�¼0ÞPS¼�J
X

j

	zj;jþ1	
z
jþ1;jþ2�g	xj;jþ1;

h i
(5)

up to a constantC ¼ NsðU� JÞ=4. HereJ ¼ ðU� 3JÞ=4,
g¼4t=ðU�3JÞ, and Ns is the total number of V3þ ions in
the chain. The Ising variable 	zj;jþ1 is equal to 1 if an

electron occupies the right site (jþ 1) of the bond and
�1 if it occupies the left site (j).
The operator that is associated with the local orbital

order parameter, njzx � njyz, has the following expression

in terms of the Ising variables:

njzx � njyz ¼ � 	zj�1;j�1þ1 þ 	zj;jþ1

2
; (6)

where theþ (�) sign holds for odd (even) values of j. The
1D QIM is exactly solvable and the ground state has FM
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ordering for U� 3J � 4t. The corresponding order pa-
rameter is h	zk¼0i ¼

P
jh	zj;jþ1i. According to Eq. (6), FM

ordering of the Ising variables corresponds to AFO order-
ing of the original variables

O � ¼ 1

L

X

j

ei�jhnjzx � njyzi ¼ �h	zk¼0i; (7)

where L is the number of sites in the helical chain.
Therefore, the quantum phase transition between the FM
and paramagnetic (PM) states of the Ising variables corre-
sponds to AFO-PO transition in terms of the original
variables.

The quantum critical point (QCP) occurs at t ¼ tc ¼
ðU� 3JÞ=4 or jgj ¼ 1. The exact value of the nearest-
neighbor correlator at the QCP is h	zj;jþ1	

z
jþ1;jþ2ic ¼ 2=�,

which implies a rather low probability of double occu-
pancy: hnjzxnjyzic ¼ 1

4 ð1� h	zj;jþ1	
z
jþ1;jþ2icÞ ’ 0:09. This

means that the transition to the PO state occurs far from the
covalent regime, and the interchain orbital coupling can be
treated as a perturbation.

Coupled Chains.—Here we will assume that the effec-
tive AFM coupling between chains stabilizes the magneti-
cally ordered state shown in Fig. 1. This assumption is
supported by unbiased numerical simulations of the three-
band Hubbard model that will be presented elsewhere [19].
In addition, this magnetic ordering is stable near the itin-
erant [20] and strong-coupling limits [7], indicating that it
remains stable over the whole Mott phase. Since charge
fluctuations are weaker across AFM bonds (the barrier isU
instead of U� 3J), the coupling between neighboring

helical Ising chains [Fig. 2(c)] will be approximated by
using a Kugel-Khomskii Hamiltonian [7,9,21]. There are
two contributions. The first contribution comes from
exchange between electrons localized in the dxy orbitals

and leads to a pure AFM spin coupling:

Hspin ¼ JS
X

ðijÞ
Si � Sj; (8)

where JS ¼ t2

U
1þ

1þ2
 is the spin exchange constant, 
 ¼

J=U, (ij) denotes an �xy bond which connects two sites
belonging to nearest-neighbor Ising chains, and Sj ¼P

�Sj�. The above AFM coupling between helical chains

is unfrustrated and leads to the q ¼ 2�ð001Þ 3D magnetic
order depicted in Fig. 1.
The second contribution comes from orbital exchange

through the antiferromagnetic zx and yz bonds (dashed
bonds in Fig. 1) connecting nearest-neighbor Ising chains.
The small probability of double occupancy induced by
interchain hopping processes justifies our perturbative
treatment of these terms. The resulting interchain orbital
Hamiltonian is

Horb ¼
X

hiji
K1ni�nj� þ K2½ni�ð1� nj�Þ þ ð1� ni�Þnj��;

(9)

where � ¼ zx (yz) when hiji is a zx (yz) bond, and K1 ¼
�2 t2

U
1þ

1þ2
 and K2 ¼ � t2

U
1�2

1�3
 denote the FO and AFO

couplings.

FIG. 2 (color online). (a) Mapping between H�¼0 and the QIM. The even and odd sublattices are indicated with blue and red circles,
respectively. (b) and (c) show the projections of the pyrochlore lattice and the helicoid Ising chains (solid lines) on the xy and yz
planes, respectively.

PRL 108, 247215 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

247215-3



A 3D effective Ising Hamiltonian can be easily obtained
from Eqs. (5) and (9). The intrachain term is given by
Eq. (5), while the interchain coupling is obtained by ex-
pressing the orbital occupation operators of Eq. (9) in terms
of the Ising variables nj� ¼ ð1� 	zj;jþ1Þ=2. However, we
should recall that the Ising operators are bond variables
defined on a dual lattice [see Fig. 2(a)]. Therefore, we
introduce the bond coordinates r ¼ ðm; n; jÞ to define the
full dual lattice, including the zx and yz bonds connecting
different helical chains. The last coordinate j denotes the
position of the bond on its helical chain, while m and n
correspond to the (x, y) chain coordinates. (See Fig. 2.) The
resulting quantum Ising Hamiltonian is

Heff ¼ �U� 3J

4

X

r

ð	zrþẑ	
z
r � g	xrÞ

� 

t2

U

X

r

ð	zrþer�ẑ	
z
rþẑ þ 	zrþerþẑ	

z
r�ẑÞ; (10)

where er ¼ ð�1; 0; 0Þ and (0,�1, 0) are vectors connecting
the site r to its neighbors. The interchain orbital coupling is
much weaker than the intrachain coupling, and both are FM.
In the large U=t limit (deep inside the MI phase), the FM
coupling between Ising variables leads to the AFO order
along dashed zx or yz bonds connecting different helical
chains (see Fig. 1). This AFO alignment is in contradiction
with naive expectations based on the a single-bond analysis.
jK1j> jK2j for finite 
, and the orbital superexchange
favors a FO configuration on the dashed zx and yz bonds.
However, the state with FO alignment along dashed
bonds is frustrated because half of those bonds would
contain pairs of occupied orbitals that are not connected
by a finite hopping amplitude. In contrast, the energy
gain is the same for every bond of the AFO order shown
in Fig. 1.

Figure 3(a) shows the thermodynamic phase diagram of
Heff (10) obtained from quantum Monte Carlo simulations
on lattices containing up to 8� 8� 40 unit cells (20480
sites). As in the 1D case, the transition between OO and PO
occurs in the crossover region between the strong- and
intermediate-coupling regimes. As expected, the ordering
temperature, TOO, increases with U.

Finite SO coupling.—To compare two different mecha-
nisms for suppression of the AFO ordering, we return to the
original Hamiltonian H on a single helical chain and
quantify the effect of a finite SO interaction. We apply
the density matrix renormalization group (DMRG) method
to a chain of 16 sites and verify that the ground state ofH is
still a fully polarized ferromagnet for � 	 0:05 U� 3Jð Þ in
the entire regime of parameters that we have been consid-
ering here. We project H into the fully polarized subspace
S and split each site of the helical chain into two single-
orbital sites. Then we arrange the orbitals in a one-
dimensional array djzx, djyz, djþ1yz, djþ1zx; . . . and identify

each orbital with an effective site l. The result is an

effective spinless fermion model with alternating hopping
and nearest-neighbor repulsion:

PSHPS ¼ X

l

tðcy2l�1c2l þ H:c:Þ þ ðU� 3Jn2ln2lþ1Þ

þ i�ðcy2lc2lþ1 � cy2lþ1c2lÞ: (11)

The ground state of PSHPS is obtained by applying the
DMRG method to a chain of 48 sites. The resulting (�, t)
quantum phase diagram and the AFO order parameter O�

[see Eq. (7)] are presented in Figs. 3(b) and 3(c), respec-
tively. It is clear that SO coupling and charge fluctuations
effectively suppress the AFO order in different parts of the
phase diagram. SO coupling � is very effective for sup-
pressing the AFO deep inside the MI (large U) regime. A
small SO coupling of about 6% of the Coulomb energy
drives the system into the PO state because � competes
against a super-exchange energy scale of order t2=U that
stabilizes the AFO order [8]. On the other hand, SO cou-
pling has little effect in the vicinity of the QCP because the
competing energy scale that determines the strength of the
charge fluctuations is of order t. We should emphasize that
although Fig. 3 includes a region deep inside the MI
regime, our approach is quantitatively correct only near
the QCP that separates the OO and PO phases.
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FIG. 3 (color online). (a) Phase diagram of the three-
dimensional quantum Ising model Eq. (10) for 
 ¼ 0:229.
(b) T ¼ 0 (�, t) phase diagram of the single helical chain
Hamiltonian H obtained with DMRG applied to chains of 48
unit cells. (c) Square of the staggered orbital order parameter as a
function of t.
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In summary, our results offer a new perspective for under-
standing the electronic properties of the vanadium spinels
AV2O4. While CdV2O4 seems to be not too far from the
localized or strong-coupling regime, it is not clear if the
magnetic ordering is accompanied by OO. Different experi-
mental probes indicate that MgV2O4 and ZnV2O4 are well
inside the intermediate-coupling regime [6,15,22].MgV2O4

and ZnV2O4 exhibit the same type of ""##magnetic ordering,
and there is no evidence of OO down to the lowest acces-
sible temperatures. According to our calculations, the SO
interaction is very effective for suppressing OO in the
localized regime relevant for CdV2O4 [8]. However, the
lack of OO in the intermediate-coupling regime relevant
for MgV2O4 and ZnV2O4 is mainly driven by charge fluc-
tuations and basically insensitive to the magnitude of the SO
interaction. While SO still contributes to the rather large
suppression of the V3þ moment in the three compounds
(1:19 �B in CdV2O4, 0:63 �B in ZnV2O4, and 0:47 �B in
MgV2O4), we attribute the significantly smaller values ob-
served in ZnV2O4 andMgV2O4 to the same charge fluctua-
tions that suppress the OO.

ZnV2O4 and MgV2O4 have very similar lattice pa-
rameters [6]. The estimated value of t for the cubic phase
of ZnV2O4 with lattice parameter 2.97 Å is t ’ 0:35 eV
[23]. According to our results, the OO should disappear
completely for U� 3J * 1:2 eV. If we assume that
U ’ 3:5 eV [15] and J ’ 0:8 eV [7,10], OO should be
completely suppressed in agreement with experimental
observations. We note that the PO phase found for
t � 0:3 U� 3Jð Þ is similar to the state obtained from an
ab initio itinerant approach [15]. However, the bond
order parameter associated with the ""## magnetic order-
ing is much weaker close to the QCP than in the itinerant
regime. In other words, the lattice distortion induced by
the bond ordering (FM bonds become shorter than the
AFM ones) near the QCP should be much smaller than
the value reported in Ref. [15]. This could explain why
recent NS measurements have not observed the strong
dimerization predicted in Ref. [15]. This may also be
the reason why ab initio calculations overestimate the
electric polarization induced by the same bond ordering
in CdV2O4 [5]. We believe that much better quantitative
agreement can be obtained from an intermediate-
coupling treatment, like the one presented here, that
incorporates the coupling to the lattice degrees of
freedom.
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