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We study quantum spin ice in an external magnetic field applied along a h100i direction. When quantum

spin fluctuations are weak, elementary excitations are quantum strings with monopoles at their ends

manifested as multiple spin wave branches in the dynamical structure factor. Strong quantum fluctuations

make the string tension negative and give rise to the deconfinement of monopoles. We discuss our results

in the light of recent neutron scattering experiments in Yb2Ti2O7.
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The quest for novel quantum phases and elementary
excitations is one of the central themes in condensed matter
physics. The notion of an elementary excitation is conven-
tionally associated with a pointlike object, as the term
quasiparticle implies. A natural question is whether ele-
mentary excitations in quantum materials could resemble
strings, rather than particles. String excitations were re-
cently found in spin ice Dy2Ti2O7 [1,2], a frustrated ferro-
magnet with fractionalized excitations known as magnetic
monopoles [3,4]. In an applied magnetic field, excitations
are strings of misaligned spins connecting two monopoles
of opposite charge.

Conventional spin ice is a classical magnet with Ising
spins [5]. Therefore, magnetic monopoles and strings in it
are classical objects whose dynamics are due to thermal
fluctuations. In this Letter, we propose that string excita-
tions with inherent quantum dynamics may exist in quan-
tum spin ice, a new family of spin-ice materials
exemplified by Tb2Ti2O7 and Yb2Ti2O7 [6,7]. In these
compounds, spins exhibit substantial quantum fluctua-
tions. We demonstrate that, in a certain regime of cou-
pling constants, elementary excitations of quantum spin
ice are strings with quantum dynamics. The calculated
dynamical structure factor Sð!;kÞ reveals multiple
branches of excitations that correspond, loosely speaking,
to strings of different lengths. As the applied field in-
creases, these branches gradually separate and the lowest
one evolves into a magnon. We connect these findings to
recent experiments on neutron scattering in Yb2Ti2O7

[8,9].
We begin with a toy model of quantum spin ice on a

two-dimensional checkerboard lattice (Fig. 1). The point
of departure is classical spin ice, in which spins have
projections Szi ¼ �1=2 on local directions ẑi shown in
Fig. 1(a). Magnetic charge on a crossed plaquette (planar
tetrahedron) is defined as Qh ¼ ��h

P
i2hS

z
i , with �h ¼

�1 for sublattice A, B. The ground states of the classical
spin ice Hamiltonian,

H0 ¼
X
h

X
hiji2h

JSziS
z
j ¼

X
h

JQ2
h=2þ const; (1)

obey the Bernal-Fowler rule, Qh ¼ 0, on every tetrahe-
dron [5]. Next, we apply a weak magnetic field in the ac
plane. In the local frames, the perturbation reads

H1 ¼ �X
i

ðhSxi þ B�iS
z
i Þ: (2)

FIG. 1 (color online). (a) The checkerboard lattice. A and B
denote two symmetrically inequivalent planar tetrahedra, and
arrows, the local ẑi directions. (b) The fully polarized state when
the field is applied in the c direction. Arrows denote the spin
orientations. (c) A string of flipped spins (light green) binding a
Q ¼ þ1 monopole (red solid circle) and a Q ¼ �1 one (open
blue circle). (d)–(f) �ImSaað!;kÞ for kb ¼ 0. B=h ¼ 0:5, 1.5,
and 4.5, respectively.
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Here we chose the local y axes to be orthogonal to the

field and introduced cosines �i � ĉ � ẑi ¼ ð�1Þci= ffiffiffi
2

p
.

The Zeeman term, Eq. (2), has two effects. Its longitu-
dinal component B breaks the degeneracy of ice states
and favors a fully magnetized state [Fig. 1(b)]. The
transverse component h induces quantum fluctuations
of spins. We treat B and h as independent parameters
in the toy model.

Flipping a single spin in the fully magnetized state
creates two monopoles with Q ¼ �1, which can be pulled
further apart. The process creates a string of spins aligned
against the field and connecting the monopoles [Fig. 1(c)].

For h ¼ 0, the energy of a string with n segments is J þ
Bn=

ffiffiffi
2

p
. For weak fields, the Hilbert space thus separates

into near degenerate subspaces with a fixed number of
strings. The transverse part of the Zeeman term, Eq. (2),
mixes states in the same subspace through quantum tun-
neling, inducing quantum motion of strings. We use de-
generate perturbation theory in the subspace with a single
string to construct an effective theory of its quantum
dynamics.

The shape of a string is specified by its segments
fs1; s2 . . . sng, or fsig for short, which take on the values
r � ð0; 1; 1Þ and l � ð0;�1; 1Þ in the abc frame. The
string thus propagates upwards in Fig. 1(c) from the
Q ¼ þ1 monopole at sþ to the Q ¼ �1 monopole at

s�. Because of the constraint s� � sþ ¼ P
n
i¼1 si, the

state of a string is fully specified by its shape and
location of one of the ends, jsþ; fsgi. We introduce a
hybrid basis with fixed shape fsig, c coordinate of the
monopole cþ, and the b component of the total momen-
tum kb:

jkb; cþ; fsigi ¼
X
bþ

eikbðbþþb�Þ=2jbþ; cþ; fsigi: (3)

To the first order in h, the motion of a string involves
removing or adding a segment at one of the ends, with
an effective Hamiltonian

Heffjcþ; fs1 . . . sngi ¼ ðJ þ nB=
ffiffiffi
2

p Þjcþ; fs1 . . . sngi � ðh=2Þeikbbn=2jcþ; fs1 . . . sn�1gi � ðh=2Þe�ikbb1=2jcþ þ 1; fs2 . . . sngi
� ðh=2ÞX

snþ1

e�ikbbnþ1=2jcþ; fs1 . . . snþ1gi � ðh=2ÞX
s0

eikbb0=2jcþ � 1; fs0 . . . sngi: (4)

Here bi stands for the b component of the vector si. We
have omitted the momentum index to simplify the notation.

When kb ¼ 0, diagonalization of Heff is simplified by
the presence of multiple reflection symmetries. We define
the parity operator Xc that switches between the l and r
orientations of the segment with coordinate c and keeps all
other segment variables si intact (Fig. 2), for example,

Xcjcþ; . . . sc�cþ ; l . . .i ¼ jcþ; . . . sc�cþ ; r . . .i: (5)

When Xc falls outside the range of the string, cþ < c< c�,
it acts on the vacuum state, which is symmetric, so we set
Xcjcþ; fsgi ¼ þjcþ; fsgi in this case. It can be seen that
X2
c ¼ 1 and ½Xc; Xc0 � ¼ 0. Although Xc does not preserve

the coordinate of the other end of the string s�, at kb ¼ 0
its horizontal displacement makes no difference; therefore,
½Xc;Heff� ¼ 0. Thus, all kb ¼ 0 eigenstates of Heff can be
classified by their parities under fXcg and Heff becomes
block-diagonal. The most important states have all-even
parities, Xc ¼ þ1. An all even state of a string of length n
and longitudinal momentum kc is

jkc; ni ¼ 2�n=2
X
cþ

X
s1...sn

eikcðcþþc�Þ=2jcþ; fs1 . . . sngi: (6)

For them, the Hamiltonian (4) simplifies,

Heffjni ¼
�
J þ nBffiffiffi

2
p

�
jni � ffiffiffi

2
p

h cos
kc
2

X
m¼n�1

jmi: (7)

The above is equivalent to the one-dimensional problem of

a particle on a lattice subject to a constant force �B=
ffiffiffi
2

p
and a hard wall at n ¼ 0. For B � h, we use the continuum
approximation to find the spectrum:

EjðkcÞ ¼ J � 2
ffiffiffi
2

p ��������h cos
kc
2

��������þ�j

��������
ffiffiffi
2

p
2

B2h cos
kc
2

��������
1=3

:

(8)

Here �j are roots of the Airy function. When B � h, the

lowest eigenstate is a single misaligned spin with the
dispersion

E1ðkcÞ ¼ J þ Bffiffiffi
2

p �
ffiffiffi
2

p
h2

B
ð1þ coskcÞ: (9)

Likewise, Heff can be diagonalized in odd-parity sectors
[10].

FIG. 2 (color online). Definition of Xc operators. The operator
X2 changes the orientation of the string segment with c ¼ 2 from
l to r in state (a) and results in a new state (b). The operators
X�1;5 fall outside the range of the string and act trivially on (a).
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Strings can be directly observed in neutron scattering
experiments. A scattered neutron flips a spin in the fully
polarized background, creating a string of length 1. The
intensity of scattering is proportional to the overlap be-
tween a length-1 string and a string eigenstate of Heff

squared. Figure 1 shows the dynamical structure factor
�ImSaað!;kÞ at several values of B=h for kb ¼ 0. For
this direction of k, the spectral weight comes solely from
states with all even parities, Xm ¼ þ1. For B & h, the
spectrum consists of overlapping bands, whereas for
B � h the bands separate and the spectrum becomes
dominated by the shortest string consisting of a single
flipped spin, in essence a magnon.

For general k, we used the Lanczos method to calculate
the spectrum numerically and found similar behavior.
Parities Xc are no longer good quantum numbers; there-
fore, more bands appear in the spectrum.

The case of three-dimensional quantum spin ice, with
S ¼ 1=2 spins on the pyrochlore lattice, proceeds along

similar lines. The most general exchange Hamiltonian is
written in local axes [Fig. 3(a)] as [11]

Hpyro ¼
X
hiji

JzzS
z
i S

z
j � Jz�½Szi ð�ijSþj þ ��ijS�j Þ þ ði $ jÞ�

� J�ðSþi S�j þ H:c:Þ � J��ð��ijSþi Sþj þ H:c:Þ:
(10)

Here �ij ¼ �ji are phase factors, and i and j label spin

sublattices 0 to 3. Specifically, �01 ¼ �23 ¼ �1, �02 ¼
�13 ¼ expði�=3Þ, �03 ¼ �12 ¼ expð�i�=3Þ, and �ii ¼ 0.
The Jzz term describes classical spin ice; the three remain-
ing terms create quantum fluctuations.
A magnetic field applied in the [001] direction adds the

Zeeman term �B
P

i�iS
x
i þ �iS

y
i þ �iS

z
i , with the cosines

�0;3 ¼ ��1;2 ¼
gxy

gz
ffiffiffi
6

p ; �0;3 ¼ ��1;2 ¼
gxy

gz
ffiffiffi
2

p ;

�0;3 ¼ ��1;2 ¼ 1ffiffiffi
3

p ; (11)

where gxy and gz are the principal components of the

g-tensor. Again, we assume that the spin-ice term Jzz
dominates and treat the rest of the terms as perturbations.
The z Zeeman term favors the fully magnetized state
[Fig. 3(b)]. Excitations are open strings connecting a pair
of monopoles withQ ¼ �1. Magnetic charge is defined as
usual, Qh � ��h

P
i2hS

c
i , where h stands for a tetrahe-

dron and �h ¼ �1 for tetrahedra of sublattice A, B.
The state of a string jsþ; fsgi is again parametrized by

the location of its Q ¼ þ1 end sþ and by its shape fsg �
fs1; s2 . . . sng. String segments si have four possible orien-
tations: b0 ¼ ð1; 1; 1Þ=4, b1 ¼ ð�1; 1; 1Þ=4, b2 ¼
ð1;�1; 1Þ=4, and b3 ¼ ð�1;�1; 1Þ=4. A segment with
orientation b0 or b3 must be followed by a segment with
orientation b1 or b2, and vice versa.
The effective Hamiltonian in the subspace of a single

string is

Heff ¼ � ffiffiffi
3

p
Jz�K1 � J�K2 � 2J��K3 þ V: (12)

Kinetic termsK1 andK2 describe first and second neighbor
hopping of the string ends; K3 describes the hopping of a

string of length 1; V ¼ J þ nB=
ffiffiffi
3

p
for a string of length n.

The explicit form of Ki is given in [10].
Figure 3 shows the neutron scattering spectrum

�ðImSaa þ ImSbbÞ calculated with the aid of Lanczos
diagonalization for momentum transfer k k B [10]. We
set J� ¼ J�� ¼ 0:36Jz� and gxy=gz ¼ 2:4 as in

Yb2Ti2O7 [8]. The spectral features resemble those of 2D
strings (Fig. 1). The branches gradually separate as the
string tension increases with B. When Jz� 	 J� 	 J�� �
B � Jzz, the monopole dynamics is dominated by the x
and y Zeeman terms; the string tension is provided by the z
term.

FIG. 3 (color online). (a) A and B denote two inequivalent
tetrahedra in the pyrochlore lattice and 0–3 four sublattices. The
gray and black arrows show the local x̂ and ẑ directions. The abc
vectors specify the local frame for one sublattice. (b) The fully
polarized state when the field is applied in the c direction.
Arrows show the spin orientations. (c) A string of flipped spins
(light green) binding a Q ¼ þ1 monopole (red solid circle) and
a Q ¼ �1 one (blue open circle) (d)–(f) The neutron scattering
spectra for the momentum transfer k k B. B=Jz� ¼ 1, 3, and 6,
respectively.
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To the first order in perturbations Jz�;�;��, transverse
fluctuations induce the motion of a string’s ends. At higher
orders in these couplings, the string’s shape can change as
well. The process involves the reversal of spins around a
closed loop (minimal length 4 in square ice and 6 in
pyrochlore ice) [12,13]. In square ice, a state j . . . lr . . .i
turns into j . . . rl . . .i and vice versa (Fig. 4). When the
position of the monopole and the anti-monopole are both
fixed, these fluctuations can be mapped onto an S ¼ 1=2
XY chain [14], with spin values 	z ¼ �1=2 representing r
and l segments, and the Hamiltonian

Hfluc ¼ V2D

Xn�1

i¼1

ð	þi 	�iþ1 þ H:c:Þ; (13)

where V2D ¼ Oðh4=J3Þ. Quantum fluctuations reduce ten-

sion of the string to B=
ffiffiffi
2

p � 2jV2Dj=�. When the applied

field is below the critical strength Bc ¼ 2
ffiffiffi
2

p jV2Dj=�, the
energy cost for string excitations is negative and the fully
polarized state becomes unstable. A similar transition oc-
curs in the pyrochlore quantum spin ice, where a string can
be mapped onto an XY chain with second neighbor inter-
actions only [Figs. 4(c) and 4(d)]

Hfluc ¼ V3D

Xn�1

i¼1

ð	þ2i�1	
�
2iþ1 þ 	þ2i	

�
2iþ2 þ H:c:Þ: (14)

The string tension is reduced by 2jV3Dj=�. When B is

below the critical value Bc ¼ 2
ffiffiffi
3

p jV3Dj=�, the polarized
state becomes unstable.

The fate of the ground state below Bc depends on the
dimensionality. On the one hand, the zero-field ground state
of the pyrochlore spin ice in the perturbative regime
Jz�;�;�� � Jzz is aUð1Þ spin liquidwith deconfinedmono-

poles [13]. Therefore, the transition at Bc could be associ-
ated with deconfinement of monopoles. On the other hand,
given that the compact quantum electrodynamics is always
confined in 2D [15], the B ¼ 0 ground state of the 2D

quantum spin ice is likely another confined phase separated
from the fully polarized state by the transition at Bc.
In the quantum spin-ice material Yb2Ti2O7, the cou-

plings associated with quantum spin fluctuations, namely,
Jz�, J�, and J��, are comparable with the spin-ice term
Jzz [8]. Therefore, perturbative calculations do not apply to
it directly. Nonetheless, the physical picture is expected to
hold beyond the perturbative regime if the material lies in
the phase that is continuously connected to the magnetized
state. A recent experiment indicates the ground state of
Yb2Ti2O7 is a ferromagnet [9]. Spontaneous magnetization
in a h100i direction acts as a molecular field, creating
nonzero string tension even in the absence of an external
field. We expect that strings in quantum spin ice can be
detected by neutrons and photons. It would be particularly
interesting to observe a continuous evolution of string
excitations in an increasing magnetic field applied along
a h100i direction.
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