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Using analytical calculations as well as computer simulations, we show that antiferromagnets can be

switched on a time scale of picoseconds using THz laser pulses only. This all-optically triggered switching

mechanism rests on the coordinated dynamics of the two interacting sublattices with an inertial character.

We calculate the resonance frequencies in the nonlinear regime, the orbits, and estimate the field strength

required for switching analytically. Furthermore, we demonstrate that ferrimagnets can be switched

similarly at their compensation point.
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One of the most interesting problems in modern mag-
netism is the question on what time scales and by what
means magnetization switching can be achieved. The first
observation of subpicosecond demagnetization of a thin Ni
film excited by a 60 fs laser pulse [1] suggested already that
such a pulse is a powerful stimulus for ultrafast magneti-
zation dynamics. Later on it was even demonstrated that a
40 fs circularly polarized pulse can reverse the magnetiza-
tion in a ferrimagnetic film [2]. Recently, it was argued [3]
that this all-optical switching of the magnetization pro-
ceeds via a novel linear reversal mechanism [4] where the
heat pulse from the laser first brings the medium into a
highly nonequilibrium state with no net magnetization,
while the circularly polarized pulse acts as an effective
magnetic field via the inverse Faraday effect controlling
the linear reversal (for a review on all-optical manipulation
of magnetic order see Ref. [5]).

All-optical magnetization switching was so far only dem-
onstrated in ferrimagnets, so that currently many investiga-
tions focus on the understanding of the special behavior of
antiferromagnets and ferrimagnets, the dynamics of both of
which is governed by the two interacting sublattices. Due to
the relatively strong exchange interaction, the dynamics of an
antiferromagnetic exchange mode is much faster than ferro-
magnetic dynamics [6,7]. Furthermore, in antiferromagnets,
the analogon to an inertial behavior does exist with possible
switching mechanisms, which can be triggered by short field
pulses though the switching itself takesmuch longer [8]. The
new development of ultrashort, single-cycle laser pulses in
the THz regime [9,10] opens up a further, new path for the
excitation of magnetic materials. Recently, Kampfrath et al.
[11] demonstrated the excitation of spin waves in the anti-
ferromagnet NiO with a single-cycle THz laser pulse, where
the excitation was solely driven by the B-field component of
the electromagnetic wave.

In this Letter, we show that THz laser pulses can in
principle be used to even switch the sublattice magnetiza-
tion of antiferromagnets on a picosecond time scale. This
switching mechanism rests on the coordinated, nonlinear
dynamics of the two interacting sublattices, with an inertial

component. We calculate the resonance frequencies in the
nonlinear regime, the orbits, and the field strength required
for switching analytically. Furthermore, using computer
simulations we show that ferrimagnets at the compensation
point can be switched similarly.
We investigate the dynamics of antiferromagnets and

ferrimagnets within the framework of a classical, atomistic
spin model. The Hamiltonian for unit vectors, Si, repre-
senting the normalized magnetic moment of the ith atom
with magnetic moment �i

s reads [12]

H ¼ X
hi<ji

JijSi � Sj �
X
i

dzðSzi Þ2 ��i
sB �X

i

Si: (1)

The first term describes the Heisenberg exchange with
exchange constants Jij taking into account the nearest

neighbors (NN) and the next nearest neighbors (NNN).
The second term represents a uniaxial anisotropy with
anisotropy constant dz. The last term is the Zeeman energy
with a time-dependent external magnetic field BðtÞ.
As an equation of motion, we consider Langevin dy-

namics, i.e., the stochastic Landau-Lifshitz-Gilbert equa-
tion. Thermal fluctuations are included via an additional
white-noise term. The coupling of the system to the heat
bath is described by a phenomenological, microscopic
damping constant � [12].
We start our investigations with simulations of the dy-

namics of antiferromagnets at 0 K considering a simple toy
model with 64 spins arranged on a cubic lattice with
periodic boundary conditions. Each spin has magnetic mo-
ment �s and gyromagnetic ratio �. We introduce an anti-
ferromagnetic coupling for NN (JNN > 0) and a
ferromagnetic coupling for NNN (JNNN ¼ �0:1JNN).
The anisotropy constant is chosen as dz ¼ 0:01JNN, and
� as 0.001. For simplicity, we excite the antiferromagnet
with rectangular field pulses BxðtÞ in x direction, perpen-
dicular to the easy axis (Fig. 1). The pulse duration is
around t � �=!AFMR, where !AFMR is the antiferromag-
netic resonance (AFMR) frequency. These pulses trigger
a precessive motion of the magnetization of the two
sublattices, M1 and M2. The effective fields of the two
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sublattices have opposite signs, and so the subblatice mag-
netizations precess in the opposite direction. Therefore, the
total normalized magnetization, m ¼ ðM1 þM2Þ=ð2M0Þ
with M0 ¼ jM1j ¼ jM2j, increases in field direction
[Fig. 1(a)], while my and mz remain zero.

While mx shows a damped oscillation after the field has
been turned off, the antiferromagnetic order parameter l ¼
ðM1 �M2Þ=ð2M0Þ shows a surprising behavior [Fig. 1(a)]:
there is only a small disturbance of the antiferromagnetic
order as long as the field is still on but the disturbance
increases after the field has been turned off. One can
exploit this behavior to trigger a so-called ‘‘inertial’’
switching [8]; i.e., one can excite the system with a short
field pulse and the system will switch on its own after the
field is already gone [see Fig. 1(b), and Ref. [13] for a short
movie]. The switching can also be observed in the total
magnetization where it leads to a phase shift [Fig. 1(b)].

The inertial behavior can be explained through the inter-
play of the different energy contributions during switching
[Fig. 1(c)]. As long as the field is turned on, the Zeeman
energy, EZ, decreases and is converted into increasing
exchange, Eex, and anisotropy energy, Ea. Afterwards, in

zero field, the energy oscillates between anisotropy and
exchange as in a mechanical oscillator where the energy
oscillates between potential and kinetic energy. The ana-
logon of the kinetic energy here is the exchange energy
between the two sublattices. Switching occurs if there is
sufficient energy stored in the exchange to overcome the
anisotropy barrier. In case the damping is high enough so
that the system cannot pass the energy barrier a second
time, it will relax into its new equilibrium state with
switched sublattices [Fig. 1(b)]. For higher excitation or
lower damping, the system can also switch several times
until it finally relaxes into one of the equilibrium states.
In order to get a deeper understanding of the inertial

switching, the Landau-Lifshitz equation of motion is
solved analytically for two normalized macro spins, m1,
m2, representing the two sublattices with effective ex-
change constant ~J neglecting damping and thermal fluctu-
ations [13]. We assume that the dynamics starts from the
antiferromagnetic ground state and a magnetic field B ¼
Bex is applied perpendicularly to the easy z axis. For
symmetry reasons, the y and z components of m and the
x component of l remain zero. Hence, one can use
the coordinates m1 ¼ ðmþ lÞ ¼ ðmx; ly; lzÞ and m2 ¼
ðm� lÞ ¼ ðmx;�ly;�lzÞ to derive a system of three

coupled differential equations as follows:

_m x ¼ �2�dzlylz=�s; (2)

_l y ¼ �ð2ðdz þ ~JÞmxlz ��sBlzÞ=�s; (3)

_l z ¼ ��ð2~Jmxly ��sBlyÞ=�s: (4)

Analyzing first the dynamics after the field pulse is turned
off we define the energy E per spin pair of the initial
excitation by the energy difference to the ground state E :¼
~Jm1 �m2 � dzðmz

1Þ2 � dzðmz
2Þ2 þ ~J þ 2dz. Combining

Eqs. (2)–(4) and using the chain rule, one finds quadratic
equations for combinations of the components of the form
x2=a2 � y2=b2 ¼ 1. It is sufficient to consider the two
equations with a plus sign, which describe ellipses, and
hence can be parameterized by trigonometric functions
using angular variables ’ and �, where ’ is the angle
between the projection of m1 to the x-y plane and the x
axis, and � is the angle between the projection ofm1 to the
y-z plane and the z axis as follows:

mx ¼ a1 cosð’ðtÞÞ ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb2=b1Þ2sin2ð�ðtÞÞ;

q
(5)

ly ¼ b1 sinð’ðtÞÞ ¼ b2 sinð�ðtÞÞ; (6)

lz ¼ a2 cosð�ðtÞÞ ¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb1=b2Þ2sin2ð’ðtÞÞ

q
; (7)

where a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð2ðdz þ ~JÞÞ

q
and b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E=2dz

p
are the

semiaxes of the elliptic equation for mx and ly, and a2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdz þ ~J � E=2Þ=ðdz þ ~JÞ

q
and b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdz þ ~J � E=2Þ=~J

q

FIG. 1 (color online). Excitation of an antiferromagnet with a
ps magnetic field pulse. (a) lz shows inertial behavior.
(b) Excitation triggers inertial switching. (c) Energies during
switching process.
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are the semiaxes of the elliptic equation for ly and lz. Using

Eq. (6), one can express mx as a function of �, and lz as a
function of ’.

To solve Eqs. (2)–(4), we insert Eqs. (5)–(7) into Eq. (2)
and get two nonlinear differential equations, which are
solved by the Jacobi amplitude function amðxjk2Þ,

’ðtÞ ¼ am

�
2
�

�s

dz
a2b1
a1

tjðb1=b2Þ2
�
; (8)

�ðtÞ ¼ am

�
2
�

�s

~J
a1b2
a2

tjðb2=b1Þ2
�
: (9)

These solutions describe two different modes. For E<2dz,
the spins precess around the easy axis [Fig. 2(c)], while for
E> 2dz, the spins precess around the x axis [Fig. 2(b)].

The Jacobi amplitude function has the property
amðxjk2Þ ¼ n� for k < 1 and x ¼ 2nKðkÞ. Here, n 2 N
and KðkÞ is the complete elliptic integral of the first kind.
With this we can calculate the eigenfrequencies of the
system exactly without any linearization. For E< 2dz,
the spins precess like in Fig. 2(c) with frequency

!AFMR
1 ¼ ��

�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dzðdz þ ~JÞ � dzE=2

q 1

Kðb1=b2Þ ; (10)

and for E> 2dz, like in Fig. 2(b) with frequency

!AFMR
2 ¼ ��

�s

ffiffiffiffiffiffiffiffiffiffiffi
~JE=2

q
1

Kðb2=b1Þ : (11)

Note that for small energies, Eq. (10) converges to the
usual, linearized solution for the AFMR frequency [6].

To solve the differential equation for the excitation
process (Bx � 0), one has to follow the same procedure.
Combining Eqs. (2) and (3) leads to a quadratic equation

for ly andmx. The difference to the elliptic equation before

is that the ellipse is shifted along the field, with its center

at ( �sB

2 dzþ~Jð Þ , 0) and its semiaxis in x direction as �sB

2 dzþ~Jð Þ
[Fig. 2(a)].
We find a minimum of Zeeman energy for a maximal

magnetization in field direction, which is at mx ¼ �sB

dzþ~J
. As

this is the energy stored in the system after the field is
turned off, we can calculate a lower limit of the field for
reaching the energy needed for switching (E ¼ 2dz) as
follows:

�sBmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dz dz þ ~J
� �q

: (12)

The minimum of the Zeeman energy is reached after 1=2
precession. To get the optimal duration time for a pulse, we
calculate the frequencies of the precession with perpendic-
ularly applied field [Fig. 2(a)]. Following the same proce-
dure as before, we get a nonlinear differential equation for
’ tð Þ, which now depends on the external field. In a good
approximation [13], the Jacobi amplitude function also
solves this equation and we get for the frequencies,

!B ¼ ��

�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dzðdz þ ~JÞ � dzð�sBÞ2

2 dz þ ~J
� �

vuut 1

Kðb̂1=b̂2Þ
; (13)

with ðb̂1=b̂2Þ2 ¼ ðJð�sBÞ2Þ=ð4dzðdz þ ~JÞ2 � 2dzð�sBÞ2Þ.
The inertial switching can now be fully described. For an

initial excitation with B> Bmin [Fig. 2(a)] and a duration
time �t � TB=2 ¼ �=!B the system accumulates enough
energy (E> 2dz) to start a precessive switching, as shown
in Fig. 2(b) with frequency !AFMR

2 . Due to damping ef-
fects, the energy in the system decays until E< 2dz, and
the precession turns into a precession around the easy axis
[Fig. 2(c)] with frequency !AFMR

1 . Depending on the state
at which the threshold energy E ¼ 2dz is reached, the
sublattices relax into a switched state or the initial state.
For a more quantitative analysis, we simulate the anti-

ferromagnet, NiO, used in the recent experiments with THz
field pulses [11]. We model the NaCl-type crystal structure
of NiO where the magnetic Ni2þ ions are arranged on a
cubic fcc lattice and the nonmagnetic O2� ions are placed
in between. Below the Néel temperature TN ¼ 523 K, the
spins of the Ni2þ ions are coupled ferromagnetically in the
f111g planes and point along the h11�2i axis. Neighboring
f111g planes are ordered antiferromagnetically. We use a
similar Hamiltonian as given in Eq. (1) but with two
uniaxial hard axes with anisotropy constant dx ¼
�48:7 �eV and dy ¼ �2:6 �eV, where x denotes the

out of plane direction, h111i, and y the in-plane hard
axis, h�110i. The exchange constant for NN is JNN ¼
�1:37 meV and for NNN JNNN ¼ 19 meV. For the mag-
netic moment, we use �s ¼ 2:04� 10�23 J=T. These ma-
terial parameters are known from neutron scattering
measurements [14].

FIG. 2 (color online). (a) Precession of the antiferromagnet
during the excitation with a magnetic field B. The lines represent
orbits of sublattice magnetizations. (b) Precession in zero field
for E> 2dz. (c) E> 2dz.
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Figure 3 shows the value of lz after having excited NiO
with a subpicosecond, rectangular magnetic field pulse of
different strengths and durations. In the yellow areas the
system relaxed back into its initial equilibrium state, lz¼1,
while in the black areas the value of lz after relaxation is
negative, indicating switching of the sublattices. In the first
black area, around By ¼ 18:3 T and �t ¼ 0:49 ps, the

excitation was sufficient to switch the sublattice magneti-
zation once, as shown earlier in Fig. 1. The field value is a
little higher than the minimum field calculated with
Eq. (12), which, for an effective exchange constant ~J ¼
6 JNNN þ JNN
� �

, would lead to a value of Bmin ¼ 17:9 T.
The optimal pulse duration for a field pulse around 18 T
calculated with Eq. (13) is�topt ¼ TB=2 ¼ 0:49 ps, which

agrees perfectly with the simulations. For higher excita-
tion, in the second yellow area the damping of the system is
not sufficient to catch the system in the new energy mini-
mum and the system relaxes back into its initial state. In the
second black area, around 19.1 T and 0.5 ps, there is
enough energy in the system for more than one full pre-
cession as shown in Fig. 2(b), leading finally to switching.
Overall, one can identify a hierarchy of black areas indi-
cating switching after an increasing number of precessions.

Antiferromagnets show no net magnetization, which
makes them less important for applications in data storage
or spintronics. Since the existence of at least two sublatti-
ces with a strong antiferromagnetic coupling is central for
the fast dynamics and the inertial switching described
above, ferrimagnets could be considered as important an
alternative. They also have two sublattices with a strong,
antiferromagnetic coupling, but in addition, a measurable
total magnetization. Therefore, we investigate the possibil-
ity of inertial switching in ferrimagnets as well. Our atom-
istic spin model for a ferrimagnet is very similar to the
antiferromagnetic model described by Eq. (1). We simulate
a cubic lattice of about 40� 40� 40 spins with periodic
boundary conditions. We distinguish between sublattices A
and B, and set the ratio of the magnetic moments to �A

s ¼
2�B

s with an antiferromagnetic NN coupling (JNN > 0),
ferromagnetic NNN coupling (JNNNA ¼ 3JNNNB ¼ �3JNN),
anisotropy constant dz ¼ 0:005JNN, and � ¼ 0:05. These
parameters result in a magnetization compensation point

TM ¼ 0:7TC, where TC is the Curie temperature. Our
simulations show that the dynamics of a ferrimagnet in
the ground state are much more complicated than the
dynamics of an antiferromagnet due to the existence of
ferromagnetic excitation modes. Nevertheless, Fig. 4
shows a simulation near TM, where we could observe an
inertial switching similar to the antiferromagnetic switch-
ing we discussed before.
To summarize, we showed that antiferromagnets can be

switched all-optically on a time scale of picoseconds using
THz laser radiation. This switching mechanism rests on the
coordinated dynamics of the two interacting sublattices
and has an inertial character. We calculate the AFMR
frequencies in the nonlinear regime, the orbits, and esti-
mate the field strength and optimal pulse duration times
required for switching analytically. By means of computer
simulations, we demonstrated that ferrimagnets can be
switched similarly at their compensation point. The field
values needed for switching turn out to be rather large.
However, one should note that real B fields from laser
radiation are neither rectangular nor single cycle. Hitting
the resonance frequency of the antiferromagnet or ferri-
magnet [11], the ac magnetic field leads to an increase of
the exchange energy with every period. Initial simulations
show that more realistic pulse shapes similar to the pulses
used in Ref. [11] can already lead to a reduction of the
needed field strength for switching by 20%–30%. We
observed a drastic reduction of the field strength needed
for switching in case of longer resonant excitations when
the frequency is corrected for its amplitude dependence in
the nonlinear regime, as shown in Eq. (10).
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