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Controlling electron spins strongly coupled to magnetic and nuclear spins in solid state systems is an

important challenge in the field of spintronics and quantum computation. We show here that electron

droplets with no net spin in semiconductor quantum dots strongly coupled with magnetic ion or nuclear

spin systems break down at low temperature and form a nontrivial antiferromagnetic spatially ordered spin

texture of magnetopolarons. The spatially ordered combined electron-magnetic ion spin texture, asso-

ciated with spontaneous symmetry breaking in the parity of electronic charge and spin densities and

magnetization of magnetic ions, emerges from an ab initio density functional approach to the electronic

system coupled with mean-field approximation for the magnetic or nuclear spin system. The predicted

phase diagram determines the critical temperature as a function of coupling strength and identifies

possible phases of the strongly coupled spin system. The prediction may arrest fluctuations in the spin

system and open the way to control, manipulate, and prepare magnetic and nuclear spin ensembles in

semiconductor nanostructures.
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There is currently significant interest in developing
quantum information storage and processing capabilities
[1] using electron (e) and/or hole (h) spins strongly
coupled to spins of either magnetic ions (MIs) and/or
nuclear spins (NSs) in a number of solid state systems.
This includes GaAs-based gated two-dimensional [2] and
zero-dimensional systems [3–5], InAs self-assembled
quantum dots [6–8], CdTe quantum dots [9–21], nanocrys-
tals [22,23], NV centers in diamond [24], phosphor impu-
rities in silicon [25], and carbon nanotubes [26].

In these systems, electron spins play either a role of
qubits or are used to control MIs or NSs. For e-spin qubits,
much effort is directed to determine the role of decoher-
ence by NSs [4,5]. For an electron interacting with MI in
diluted magnetic semiconductors [27,28], the central spin
problem has been understood in terms of magnetopolarons
(MPs)—a cloud of magnetization surrounding a localized
e spin [28]. On the other hand, the interaction of many
electrons in a spin singlet state with MIs/NSs, e.g., in a
metal [29] or a quantum dot [14,15], induces a Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction among MIs/
NSs. The question of whether spin textures could form in
a strongly coupled two-dimensional electron-NS subsys-
tem has been addressed recently by Loss et al. [30]. Both
scenarios of MPs and RKKY interactions can be realized in
semiconductor quantum dots containing MIs/NSs by
changing electron or hole concentration with a gate,
through modulation doping [14,15] or through deformation
of quantum dot confining potential [17]. Spin singlet drop-
lets are already employed in the initialization of coded
qubits in lateral quantum dots [3] and as a component of

trions in the optical manipulation of spin in self-assembled
quantum dots [7,8].
Currently, magnetic ordering in closed-shell quantum

dots (QDs) doped with Mn ions is under question. In
particular, recent work by Oszwałdowski et al. [21] sug-
gests that closed-shell QDs doped with Mn do not allow
magnetic ordering in the electronic singlet state and that
magnetic ordering requires a pseudosinglet two-electron
state which is neither a singlet nor a triplet. The authors
came to such a conclusion because the ground state of a
nonmagnetic two-electron system is a spin singlet but
neglected the RKKY interaction previously discussed in
Ref. [14]. Hence, a full understanding of the strongly
interacting electronic singlet state with MI/NS in QDs still
appears to be missing. In this Letter, we show that the
closed-shell magnetic QDs strongly coupled with magnetic
ions do allow magnetic ordering. The perturbative RKKY
interaction among Mn ions for the closed-shell QDs, first
discussed in Ref. [14], does not change the symmetry of the
electronic ground state. In the present Letter, our nonper-
turbative approach predicts a novel broken symmetry elec-
tronic ground state with spin textures, a nontrivial form of
magnetic ordering, followed by a ferromagnetic state of
electrons and magnetic ions at very strong coupling.
Because of the degeneracy of the spin textures under
continuous rotational transformation, the magnetization
of Mn and the charge and spin densities of e=h are ex-
pected to drift over time. We use an ab initio density
functional approach to the e system and mean-field
approximation for the MIs/NSs. We show that, beyond
RKKY approximation [14], a spin singlet e droplet
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corresponding to closed-shell quantum dots strongly cou-
ples with MIs/NSs. The e droplet breaks down and forms a
nontrivial antiferromagnetic (AFM) spatially ordered spin
texture of MPs at low temperature. For a very strongly
coupled and weakly confined quantum dot system, this
transition is followed by a transition to a ferromagnetic
state. This prediction opens the way to controlling, ma-
nipulating, and preparing MI/NS ensembles in semicon-
ductor nanostructures.

We focus here on closed-shell QDs [31] containing
N ¼ 2; 6; 12; . . . electrons in the presence of many spins
of either NSs or MIs, e.g., mangan in CdTe [14,15,27,28].
We approximate many spins by a continuous magnetiza-
tion [16,17] and study the strongly coupled e-MI system as
a function of temperature T, electron numberN, strength of
e-MI exchange coupling Jsd, MI density nm, and strength
of confining potential !0. In particular, we find that, for a
given confining potential, number of electrons, MI/NS
density, and their coupling with electrons, there exists a
critical temperature, T�, for a two-dimensional nucleation
and growth of inhomogeneous AFM spin textures with
broken symmetry. Below T� and above a critical e-MI
exchange coupling strength, a spin singlet droplet and a
homogeneous magnetization density break down and mo-
lecular states of MPs associated with individual e spins
form. TheMPs correspond to the inhomogeneous magnetic
field of MIs, inducing an effective spatially varying poten-
tial, localizing electrons with spin-up in different positions
from the electrons with spin-down, significantly changing
electronic spin distribution. This is to be compared with
closed-shell QDs with large confinement potential and
with only two MIs [14,15]. Using exact diagonalization
[14] of the interacting e-e and e-MI Hamiltonian, it has
been shown that the RKKY coupling, a second-order ef-
fective interaction between MIs mediated by two e’s with
opposite spins, describes well the ground state with total
magnetic momentMz ¼ 0 (AFM ordering) andMz ¼ 2M,
ferromagnetic (FM) ordering, depending on the relative
position of MIs in a QD, while maintaining the spin singlet
electronic ground state with spin polarization Pz ¼ 0.
Here, M is the total spin of single MI/NS, e.g., M ¼ 5=2
for Mn. A related problem has been recently studied where
an analytical variational form of the two-electron wave
function coupled to a large number of MIs, neither two-
body singlet nor triplet, called a pseudosinglet, was intro-
duced to describe partial quantum correlations of the
coupled spin singlet MI system [21].

We use an ab initio density functional theory to describe
the droplet of e’s in a parabolic quantum dot with closed
electronic shells for electron numbers N ¼ 2; 6; 12; . . . and
a mean-field approximation for the MIs/NSs system [16].
We employ spin unrestricted local density approximation
(LSDA) for electrons, where the many-body Hamiltonian
is replaced by the Kohn-Sham (KS) Hamiltonian, HKS. In
LSDA, the self-consistent KS orbitals are calculated for

spin-up and down independently, without any additional
symmetrization of their spatial dependence. The electrons
interact with a magnetic field produced by the MIs, which
in turn is determined self-consistently by the electron spin
density. The electrons fill KS orbitals according to Fermi
statistics at finite temperature, and the electronic correla-
tions are taken into account via an exchange-correlation
(XC) energy functional. In this approach, the self-
consistent solutions form a large class of variational
many-body wave functions; among them, the configuration
with the lowest free energy is found. We also decompose
the planar and perpendicular components of the confining
potential of a single QD, as described in Refs. [16,17], and
expand the electronic wave functions in terms of its planar,
c i�ð~rÞ, and subband wave function, �ðzÞ, and project HKS

onto the XY plane by integrating out �ðzÞ, assuming that
only the lowest energy subband is filled. Hence, KS orbi-
tals, c i�ð~rÞ, are calculated by diagonalizing HKSc i�ð ~rÞ ¼
�i�c i�ð ~rÞ, in real space. Here, �i� are the KS eigenener-

gies, and HKS¼�@
2

2m� r2
rþV�, with the KS effective poten-

tial denoted as V� ¼ VQD þ VH þ V�
XC � �

2 hsdð ~rÞ. @ is the

Planck constant, m� is the e effective mass, �e is the e
charge, and � ¼ �1 denotes spin-up (") and down (#).
VQD is the planar confining potential of the QD, VH and

V�
XC are Hartree and spin-dependent exchange-correlation

potentials, and hsdð ~rÞ ¼ Jem
R
dzj�ðzÞj2BMðMbð ~r; zÞ=

kBTÞ. Here, BMðxÞ is the Brillouin function [27], kB is
the Boltzmann constant, bðrÞ ¼ Jsd½n"ðrÞ � n#ðrÞ�=2 is

the effective field seen by MIs, and n�ð ~rÞ ¼P
ijc i�ð ~rÞ�ðzÞj2fð�i�Þ. Here, fð�Þ¼1=fexp½ð���Þ=

kBT�þ1g is the Fermi-Dirac distribution function, � is
the chemical potential, and Jem ¼ JsdnmM is the mean-
field e-Mn or e-NS exchange coupling. Jsd is the local
exchange coupling, FM for e-MI and AFM for e-NS or
h-MI. The sign of Jsd affects the relative orientations of
e=h spin polarization with respect to MIs/NSs. Finally, nm
denotes the MI/NS average density.
Our approximation in neglecting the spatial distribution

of MIs is substantiated by experiments on colloidal nano-
crystals and self-assembled QDs [22,23], showing that
inhomogeneity in the distribution of Mn ions per QD,
corresponding up to � 5% doping in typical magnetic
semiconductors, can be neglected [27]. For nuclear spins
in, e.g., GaAs, inhomogeneity due to different isotopes is
unlikely to play an important role. Typical Mn density is
much lower than the NS density; however, because the
e-Mn exchange coupling is much higher than the e-NS
exchange coupling, the Jem for both can be of the
same order of magnitude. Therefore, we only present
numerical results for a system of interacting e=h and
MIs. For a strongly coupled e-MI system, we perform a
numerical calculation for (Cd, Mn)Te, where a�B ¼
5:29 nm and Ry� ¼ 12:8 meV are the effective Bohr ra-
dius and Rydberg, the sd exchange coupling is Jsd ¼
0:015 eV nm3, the effective mass m� ¼ 0:106, and
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� ¼ 10:6 [12]. We consider QDs with electronic shell
spacing !0 in the range of 1–3Ry�, width of 1 nm, and
variable MI density nm. For definiteness, we focus on the
example of Mn isoelectronic impurity in CdTe, with the z

component of ~MI of impurity spin satisfying Mz ¼
�M;�Mþ 1; . . . ;M and M ¼ 5=2. The direct Mn-Mn
AFM coupling is negligible in the range of MI densities
considered in this study.

The spatial dependence of the z component of magneti-
zation Mzð ~rÞ of Mn ions, solutions of the self-consistent
LSDA equations for the coupled e-MI system, are shown in
Figs. 1(a)–1(c) for the closed-shell parabolic QD corre-
sponding to !0 ¼ 2Ry�, nm ¼ 0:1 nm�3, and temperature
T ¼ 0:5 K for N ¼ 2 [Fig. 1(a)], N ¼ 6 [Fig. 1(b)], and
N ¼ 12 [Fig. 1(c)]. Note that the total magnetization per
unit area A, hMzi ¼ 1

A

R
d2rhMzð~rÞi ¼ 0, indicates the net

AFM ordering of MIs. These states clearly resemble spin
textures with broken rotational symmetry. We see two
spatially separated magnetization clouds for the N ¼ 2

quantum dot, six for N ¼ 6, and 12 for N ¼ 12. Hence,
we consider these states as molecules of MPs. The inset
shows schematically the e-spin density for 12 electrons
with a decagon ring structure and two electrons in the
middle in a form of a spin corral, a circular symmetric
spin texture [see Fig. 1(c)]. The inhomogeneous spin den-
sity gives way to a uniform solution in whichMz ¼ sz ¼ 0
for T > T� � 2 K independent of N. Note that this finding
is in contrast with open-shell FM states that are stable up to
T � 20 K [16,17] and the FM state proposed recently in
Ref. [21] for closed-shell QDs.
To investigate the origin and stability of AFM states

presented in this Letter, we focus on a closed-shell QD
with N ¼ 2. Let us first consider the RKKY interaction
between two MIs in a QD [14] with N ¼ 2 at positions
~R1 ¼ ðX; 0Þ and ~R2 ¼ ð�X; 0Þ: JðXÞ ¼ ��ð2� 5X2Þe�X2

is the e-mediated effective interaction between two MIs,
where � ¼ ðJ2D=�l0Þ2½1=ð16!0Þ�, and the distance is

measured in l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2m�!0Þ

p
. Here, J2D ¼ Jsd2=d and

d is the thickness of the QD in the perpendicular direction

[14]. We see that for X >
ffiffiffiffiffiffiffiffi
2=5

p
the interaction is AFM. It is

now possible to imagine that the RKKYinteraction triggers
a broken symmetry state where the exchange interaction
localizes an electron with spin-up on the left MI and a spin-
down electron on the right MI, a two-atomic molecule of
MP, seen in Fig. 1(a). In Fig. 2, we show self-consistent
solutions of LSDA equations, including the effective po-
tential V� and the spatial profile of spin-dependent KS
wave functions for the parabolic confining potential with
level spacing !0 ¼ 2Ry�. In Fig. 2(a), T ¼ 2 K and the
paramagnetic state with Mz ¼ Pz ¼ 0 is the ground state.
The spin-dependent effective potential V� is shown with
open circles in which V" ¼ V#. In this case, we find that the
self-consistent KS eigenenergies and eigenstates with op-
posite spins are identical, �0" ¼ �0# and c 0" ¼ c 0#. In

Fig. 2(b), we present our results for T ¼ 0:5 K.
Interestingly, with decreasing temperature, a continuous
displacement in spin-dependent wave functions develops
that spontaneously breaks the circular symmetry of the
QD, as discussed above. In this case, we find two degen-
erate spatially separated wave functions c 0" and c 0#, with
�0" ¼ �0#. These are analogues to the nucleation of the

para-H2 molecule from para-He if two nuclei of He
undergo a continuous fragmentation. A two-dimensional
profile of e-spin polarization Pz ¼ ðn" � n#Þ=2, shown in

(c), is also a result of the spontaneous spatial spin separa-
tion of KS orbitals. Two asymmetric bumps observed in
effective potentials V" and V# are the result of the sponta-

neous formation of AFM spin texture in Mz, shown ex-
plicitly in Fig. 1.
The spontaneous symmetry breaking and the formation

of MPs depend on the parameters of the system. For
example, in the example studied here, the critical tempera-
ture depends on the e-MI exchange coupling strength
Jem ¼ JsdnmM, which is proportional to exchange

FIG. 1 (color online). The spatial profile of magnetization Mz

for a closed-shell parabolic QD with !0 ¼ 2Ry� and nm ¼
0:1 nm�3. (a)–(c) correspond to N ¼ 2; 6; 12 at T ¼ 0:5 K and
Jsd ¼ 15 meVnm�3. The coordinates ðx; yÞ are expressed in the
effective Bohr radius. The inset in Fig. 1(c) shows a decagon
molecular structure of the N ¼ 12 closed-shell QD with a
molecular state of 12 MPs, each shown by an arrow. The
directions of arrows show the direction of Mz in each MP.
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coupling, MI density, and MI spin. Figure 3 shows the
phase diagram of the N ¼ 2 closed-shell QD with !0 ¼
2Ry� and nm ¼ 0:1 nm�3. The curves show the critical
temperature as a function of Jem. In the limit of low Jem,
e.g., either for e and/or low density of MIs, a direct
transition from the AFM spin texture, shown in the inset,
to the normal state is seen. For high Jem, e.g., for either h
and/or high density of MIs, a transition through an inter-
mediate state of spin corral, shown in the inset (see Fig. 3),
is observed. This is a transition from the rotational sym-
metry breaking state, stable at low temperatures, to another
type of spin texture with rotational symmetry, stable within
T�
1 � T � T�

2 . For Jsd ¼ 75 meVnm3, corresponding to

h-MI exchange coupling, and nm ¼ 0:1 nm�3, we find
T�
1 ¼ 17 and T�

2 ¼ 35 K. We emphasize that the total
spin of electrons is zero for the range of parameters con-
sidered in this study. However, by increasing Jem above a
critical value that is determined by the energy difference in
the lowest unoccupied and highest occupied KS energy
levels, a transition to the spin triplet takes place [16,17,19].
For the typical quantum dots investigated here, the critical
value of J�em � 30 meV is much higher than the range of
exchange couplings Jem responsible for the spin textures
predicted here.
To summarize, low temperature solutions of the ab initio

density functional approach to electrons in closed-shell
quantum dots strongly coupled with the magnetic and/or
nuclear spins described in the mean-field approximation
show the existence of a broken symmetry spatially inho-
mogeneous state of geometrically ordered molecules of
magnetopolarons. The phase diagram of topologically
stable nontrivial AFM states determined by the number
N of electrons in a quantum dot, MI density, exchange
coupling strength, temperature, and confining potential is
predicted. The predicted ordered spin states may arrest
fluctuations in the spin system and open the way to control,
manipulate, and prepare MI/NS ensembles in semiconduc-
tor nanostructures for quantum information processing and
storage.
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[21] R. Oszwałdowski, I. Žutić, and A.G. Petukhov, Phys. Rev.
Lett. 106, 177201 (2011).

[22] S. T. Ochsenbein, Y. Feng, K.M. Whitaker, E. Badaeva,
W.K. Liu, X. Li, and D. R. Gamelin, Nature Nanotech. 4,
681 (2009); R. Beaulac, Y. Feng, J.W. May, E. Badaeva,
D. R. Gamelin, and X. Li, Phys. Rev. B 84, 195324 (2011);
K.M. Whitaker et al., Nano Lett. 11, 3355 (2011).

[23] R. Viswanatha, J.M. Pietryga, V. I. Klimov, and S. A.
Crooker, Phys. Rev. Lett. 107, 067402 (2011).

[24] G. D. Fuchs, G. Burkard, P. V. Klimov, and D.D.
Awschalom, Nature Phys. 7, 789 (2011).

[25] B. E. Kane, Nature (London) 393, 133 (1998).
[26] H. O.H. Churchill, A. J. Bestwick, J.W. Harlow, F.

Kuemmeth, D. Marcos, C.H. Stwertka, S. K. Watson,
and C.M. Marcus, Nature Phys. 5, 321 (2009).

[27] J. K. Furdyna, J. Appl. Phys. 64, R29 (1988); T. Dietl, H.
Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001);
M. Abolfath, T. Jungwirth, J. Brum, and A.H.
MacDonald, ibid. 63, 054418 (2001).

[28] The Physics of Diluted Magnetic Semiconductors,
Springer Series in Materials Science, edited by J. Gaj
and J. Kossut (Springer-Verlag, Berlin, 2011).

[29] M.A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
T. Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida,
Phys. Rev. 106, 893 (1957).

[30] D. Loss, F. L. Pedrocchi, and A. J. Leggett, Phys. Rev.
Lett. 107, 107201 (2011).

[31] S. Raymond et al., Phys. Rev. Lett. 92, 187402 (2004).

PRL 108, 247203 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

247203-5

http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1103/PhysRevLett.104.236802
http://dx.doi.org/10.1103/PhysRevLett.104.236802
http://dx.doi.org/10.1103/PhysRevLett.106.106803
http://dx.doi.org/10.1103/PhysRevLett.106.106803
http://dx.doi.org/10.1103/PhysRevLett.88.186802
http://dx.doi.org/10.1103/PhysRevLett.88.186802
http://dx.doi.org/10.1103/PhysRevB.67.033301
http://dx.doi.org/10.1103/PhysRevB.67.033301
http://dx.doi.org/10.1103/PhysRevB.74.195301
http://dx.doi.org/10.1103/PhysRevB.76.045312
http://dx.doi.org/10.1103/PhysRevLett.101.227203
http://dx.doi.org/10.1038/nmat3102
http://dx.doi.org/10.1103/PhysRevLett.107.197402
http://dx.doi.org/10.1103/PhysRevLett.107.197402
http://dx.doi.org/10.1103/PhysRevLett.93.207403
http://dx.doi.org/10.1103/PhysRevLett.93.117201
http://dx.doi.org/10.1103/PhysRevLett.93.117201
http://dx.doi.org/10.1103/PhysRevB.72.075358
http://dx.doi.org/10.1103/PhysRevLett.95.217206
http://dx.doi.org/10.1103/PhysRevLett.95.047403
http://dx.doi.org/10.1103/PhysRevLett.97.107401
http://dx.doi.org/10.1103/PhysRevLett.96.157201
http://dx.doi.org/10.1209/0295-5075/81/37005
http://dx.doi.org/10.1209/0295-5075/81/37005
http://dx.doi.org/10.1103/PhysRevLett.98.207203
http://dx.doi.org/10.1103/PhysRevLett.98.207203
http://dx.doi.org/10.1088/1367-2630/9/9/353
http://dx.doi.org/10.1103/PhysRevLett.101.207202
http://dx.doi.org/10.1103/PhysRevLett.101.207202
http://dx.doi.org/10.1103/PhysRevLett.102.127402
http://dx.doi.org/10.1103/PhysRevLett.102.127402
http://dx.doi.org/10.1103/PhysRevB.78.045321
http://dx.doi.org/10.1103/PhysRevB.78.045321
http://dx.doi.org/10.1103/PhysRevB.80.115335
http://dx.doi.org/10.1103/PhysRevLett.107.207403
http://dx.doi.org/10.1103/PhysRevLett.107.207403
http://dx.doi.org/10.1103/PhysRevLett.106.177201
http://dx.doi.org/10.1103/PhysRevLett.106.177201
http://dx.doi.org/10.1038/nnano.2009.221
http://dx.doi.org/10.1038/nnano.2009.221
http://dx.doi.org/10.1103/PhysRevB.84.195324
http://dx.doi.org/10.1021/nl201736p
http://dx.doi.org/10.1103/PhysRevLett.107.067402
http://dx.doi.org/10.1038/nphys2026
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1038/nphys1247
http://dx.doi.org/10.1063/1.341700
http://dx.doi.org/10.1103/PhysRevB.63.195205
http://dx.doi.org/10.1103/PhysRevB.63.054418
http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1143/PTP.16.45
http://dx.doi.org/10.1103/PhysRev.106.893
http://dx.doi.org/10.1103/PhysRevLett.107.107201
http://dx.doi.org/10.1103/PhysRevLett.107.107201
http://dx.doi.org/10.1103/PhysRevLett.92.187402

