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Recent advances in the creation and modulation of graphenelike systems are introducing a science of

‘‘designer Dirac materials’’. In its original definition, artificial graphene is a man-made nanostructure that

consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-

dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so

grows the need for an accurate theory of its electronic properties, including the effects of electron-electron

interactions. Here we determine those effects on the band structure and on the emergence of Dirac points.
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Graphene, a single two-dimensional (2D) crystal of car-
bon atoms, has become the most attractive carbon-based
material and one of the hottest topics in condensed matter
and material physics [1]. Many of the superlatives attributed
to graphene are due to the fact that, at low energies, elec-
trons (and holes) behave as massless chiral Dirac fermions
as a result of a linear dispersion relation near two inequiva-
lent corners of the Brillouin zone, i.e., the Dirac points.

Not surprisingly, material combinations and arrangements
with properties similar to real graphene have been sought
[2,3], and experimental progress in producing artificial struc-
tures has been impressive. In 2009, the use of a hexagonal
nanopatterned 2D electron gas (2DEG)—similar to previ-
ously considered triangular antidot arrays [4,5]—was sug-
gested [6], and soon thereafter Gibertini et al. [7] presented
the graphenelike band structure of GaAs quantum dots
(QDs) arranged in a honeycomb lattice: a system they called
‘‘artificial graphene’’ (AG). Their tight-binding calculations
were supplemented by an experimental demonstration of
a nanopatterned modulation-doped sample [7,8]. Very re-
cently, the same authors and their collaborators showed that
AG subjected to a strong magnetic field exhibits collective
modes according to the Mott-Hubbard model [9]. In a paral-
lel development, a structure equivalent to AG has been
fabricated by STM-controlled deposition of CO molecules
on the 2DEG on a Cu (111) surface [3]. This leads to
extremely controlled samples having even less defects than
natural graphene. The trend is not limited to electronic
systems: as another way to control Dirac fermions, Tarruell
et al. [2] have created a tunable honeycomb optical lattice in
an ultracold quantum gas.

One of the reasons for pursuing the study of AG is that this
system offers the opportunity to experimentally study re-
gimes that are difficult or impossible to achieve in natural
graphene (including high magnetic fluxes, tunable lattice
constants, precise manipulation of defects, edges, and strain)

andallow the experimental observationof several predictions
made for massless Dirac fermions [10–12]. In Ref. [13],
experimental criteria for the realization of graphenelike
physics in 2DEGs have been described. Recently, the system
has been proposed as a candidate for the observation of a
quantized anomalous Hall insulator [14].
These rapid experimental advances call for state-of-the-art

numerical tools to calculate electronic properties of AG and,
more generally, of artificial lattices. In view of the accuracy
with which the sample can be prepared, it is particularly
important to be able to reliably predict the conditions under
which isolated Dirac points will appear in AG. By ‘‘isolated
Dirac points’’ we mean a set of points in momentum space
where a conical conduction band makes contact with a
conical valence band: the contact occurring at an energy at
which no other state exists. As shown in Ref. [7], such points
occur only if the depth of the potential within the QDs of the
AG structure exceeds a certain minimum value. However,
this minimum value cannot be reliably predicted from a
theory that neglects the electron-electron (e-e) interactions.
It is not just a matter of replacing the bare potential by an
effective one that includes interaction effects such as screen-
ing, exchange, and correlation. The key point is that this
effective potential must be consistent with an electronic
density distribution that places the Fermi level at the Dirac
point. For example, the effective potential atN ¼ 1 electrons
per dot is quite different from the effective potential atN ¼ 4
electrons per dot because the electronic density distributions
in the two cases are widely different.
In order to include the e-e interactions in the study of

AG structures, we resort to density-functional theory [15]
within the 2D version of the local-density approximation
(2D LDA) that has been shown to successfully describe
the electronic structure of individual and coupled QDs
fabricated in the 2DEG [16,17]. This takes us two steps
beyond previous tight-binding studies. First, we are able to
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include the e-e interactions, thus producing the first self-
consistent (density-dependent) band structure of AG.
Second, we are also able to describe the system in a fully
resolved manner in real space with a realistic model poten-
tial. Our results fully confirm the existence of Dirac points
and massless Dirac fermions. However, we find that the
threshold for the emergence of isolated Dirac points is
increased in a way that significantly depends on the electron
density. For example, from the noninteracting electron the-
ory [7] we know that both N ¼ 1 and N ¼ 4 electrons per
dot are candidates for the emergence of an isolated Dirac
point, even though the N ¼ 4 case requires a much deeper
potential well. When e-e interactions are included we find
that the threshold for the emergence of the Dirac point is
slightly enhanced in theN ¼ 1 case, but largely enhanced in
the N ¼ 4 case.

We consider electrons confined in GaAs/AlGaAs QDs in
the effective mass approximation, which is the conventional
approach to the modeling of individual and coupled semi-
conductor QDs [16,18]. We use the effective mass m� ¼
0:067m0 and the dielectric constant � ¼ 12:4�0. Each QD
is modeled by a cylindrical hard-wall potential with radius
r ¼ 52:5 nm and a tunable heightV0, and the lattice constant
is fixed toa ¼ 150 nm (see Fig. 1). These are values that can
be reached experimentally [19–21], and they are similar to
the previous tight-binding study in Ref. [7] in order to allow
direct comparison between the results. We point out that
softening the potential from a hard-wall to a Gaussian shape
did not have qualitative effects on the results below.

The electronic structure of the systemwas calculated with
the OCTOPUS package [22]. The code solves the Kohn-Sham
equations on a real-space discrete grid. The only required
convergence parameter is the grid spacing, and it is, there-
fore, not bound to any particular choice of a basis set.

In order to describe a truly 2D distribution of atoms, we
follow the procedure described in Ref. [23]; i.e., we impose
a set of mixed boundary conditions (periodic in the plane,
zero Dirichlet off plane) and cut off the Coulomb potential
to zero along the direction perpendicular to the plane, while
retaining its full long range of action within the plane. The
levels obtained are rigorously equivalent to those calculated
in an infinitely wide supercell in the direction perpendicular
to the plane.
As shown inFig. 1, the unit cell is chosen not tobeminimal

but to contain four dots so that the 2DBravais lattice becomes
rectangular. The unit cell size is �130 nm� 225 nm and
the grid spacing is �2:45 nm. The reciprocal space cell is

generated by the vectors Bx ¼ 2�
a ½13 ; 0� and By ¼ 2�

a �
½0; ð1= ffiffiffi

3
p Þ�, where a is the interdot distance. The volume

of this cell in reciprocal space is half the volume of the
standard hexagonal Brillouin zone (BZ). Obviously, the
physically meaningful results are not affected by our choice
of the unit cell. However, in order to compare to calculations
performed in the minimal (standard) cell, our bands must be
appropriately unfolded. The high symmetry lines of the
standard BZ can all be mapped to corresponding paths into
the smaller BZ. The mapping is described in the caption of
Fig. 1. For ease of comparison with previously published
results, all the bands are displayed unfolded in this work. In
the process of unfolding the band structure from the rectan-
gular to the hexagonal cell, care must be exerted to avoid the
phenomenon of aliasing, i.e., the spurious duplication of
bands. This is greatly facilitated by the observation that the
true bands must be continuous and differentiable at K along
the �� K �M line.
As mentioned in the introduction, in order to assess the

importance of e-e interactions, we compare the results for
noninteracting electrons with those computed using the
Kohn-Sham density-functional theory approach [15] within
the 2D LDA. For the correlation part of the LDA we have
used the parametrized form of the quantum Monte Carlo
data calculated for the 2DEG by Attaccalite et al. [24]. In
view of previous works on QDs fabricated in the 2DEG
[16,17], we believe that the 2D LDA provides a reasonable
approximation for the energy bands considered here.
In Fig. 2, we show the energy bands calculated for

noninteracting (a) and interacting electrons in the LDA
(b) when V0 ¼ �0:6 meV. In both cases, we find distinc-
tive Dirac points at K with a linear dispersion relation.
These are the defining attributes of graphenelike physics.
From Fig. 2 it is clear that, in the case of singly occupied
QDs in the AG, the e-e interactions do not make the Dirac
point less stable. In general, the band structures are very
similar, although, as expected, the e-e interactions reduce
the bandwidth and, thus, increase the energy gaps between
the two lowest bands. However, as an interesting exception
to this tendency, the LDA result has a considerably smaller
gap above the two lowest bands. We believe that this
indicates the gap has a primarily kinetic origin; i.e., it
arises from an overlap of neighboring localized orbitals
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FIG. 1 (color online). Left: Rectangular unit cell in real space.
Right: Orthorhombic irreducible Brillouin zone (rectangle
�XSY) compared with the conventional one (�MK) for the
honeycomb lattice. The basis vectors Bx and By are defined in

the text. The hexagonal high symmetry points are K � 1
3By ¼

K0, M � � ¼ M0. The mapping from the hexagonal to the
orthorhombic cell is performed as follows: the ��M line
corresponds to the �� X� � path in the orthorhombic cell;
the M� K segment corresponds to �� K0, and the K � �
segment corresponds to the two segment path K0 � K00 �M0,
with K00 � 1

2 ðBx þ 1
3ByÞ. Inset: Part of the lattice in real space.
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forming a bonding-antibonding pair. Such a gap is reduced
when the overlap of orbitals in the pair decreases, due to
increased electron localization.

The general tendency of increased electron localization
due to e-e interactions is clearly visible in the electron
density shown in Fig. 3. As expected, the relative differ-
ence in the density with and without e-e interactions is
larger when jV0j is small. Indeed, for small jV0j the system
is closer to the homogeneous 2DEG, where interactions (at
small densities as in this case) drive the system to the
Wigner crystal regime [25].

To obtain a closer view on the stability of the Dirac points
and the effects of e-e interactions, we next examine the
onset and the size of the energy gap at the M point

(see Fig. 2). The gap is defined as the energy difference
between the Fermi level and the band closest to the Fermi
level at theM point. Negative values correspond to crossings
of the band(s) through the Fermi level so that then there is no
gap around the Dirac point. Figure 4 shows the size of the
gap as a function of jV0j, i.e., the depth of the QDs. In the
absence of interactions, the threshold potential for the gap
is V0 ¼ �0:18 meV, which agrees perfectly with the tight-
binding result in Ref. [7].When the interactions are included
in the LDA level, the threshold shifts to V0 ¼ �0:30 meV.
In other words, the inclusion of e-e interactions leads us to
predict that deeper QDs are required in order to achieve an
isolated Dirac point in the system. When jV0j is further
increased, the results without and with interactions become
very similar. The gap reaches its maximum value at V0 ¼
�0:8 meV (or V0¼�0:6meV in the absence of interac-
tions), which can be regarded as the optimal QD depth for
the stability of the Dirac point. As expected, the gap shown
in Fig. 4 closes asymptotically in the large-jV0j limit. The
closing proceeds in a similar manner regardless of e-e
interactions, albeit LDA results are not available at jV0j>
2 meV due to poor convergence. Gibertini et al. argued
that there is a localization threshold in the system at
jV0j � 3 meV, due to the formation of disorder-induced
bound states. This effect is not included in our calculations
since the perfect periodicity of the lattice keeps the wave
functions extended, in principle, up to the limit jV0j ! 1.
Finally, we consider occupying the QDs with more than

one electron. As suggested in Ref. [7], where a noninteract-
ing tight-binding scheme was used, the next Dirac point
should appear when N ¼ 4. In Fig. 5, we show the energy
bands close to the Fermi energy when N ¼ 4 and V0 ¼ �2
and �6:8 meV in the noninteracting (a) and interacting
cases (b), respectively. The lowest two bands (not shown)
are located at considerably lower energies, i.e., at about
�0:9 and �0:8 meV, respectively. It is noteworthy that,
although the Dirac point can be found in both cases, it is
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FIG. 2 (color online). Energy bands calculated for noninter-
acting (a) and interacting electrons (N ¼ 1 per dot) in density-
functional theory (b). Clear Dirac points at the Fermi level
shifted to zero (dashed lines) and a linear dispersion relation
can be found in both cases (circles).
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FIG. 3 (color online). Electron densities in artificial graphene
(N ¼ 1 per dot) calculated for two depths of the potential wells,
V0 ¼ �0:2 meV (up) and V0 ¼ �0:5 meV (down). The left and
right panels show the results without and with the e-e interac-
tions, respectively.
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much less stable in the interacting system: first, due to the
strong intradot interactions the QDs need to be significantly
deeper than without interactions. Furthermore, the Dirac
point in the interacting case appears in an energy gap that
is smaller by about an order of magnitude. Consequently,
decreasing the potential depth from jV0j ¼ 6:8 to 6.5 meV
already disruptes the Dirac point, as the band above the
Fermi level in Fig. 5(b) is shifted downwards. In contrast,
the Dirac point in the noninteracting case is stable down to
about jV0j ¼ 1 meV. These results indicate that the realiza-
tion of AG constitutes a challenge for the present engineer-
ing techniques if the QDs are occupied by several electrons.

To summarize, we have studied the electronic properties
of artificial graphene fabricated in the two-dimensional elec-
tron gas. The electron-electron interactions, treated here
within the two-dimensional local-density approximation in
density-functional theory, generally lead to stronger local-
ization of the electrons in the quantum dots. The interactions
shift the threshold for the emergence of isolated Dirac points
to larger well depths than found without interactions. This
effect is significantly pronounced when the number of elec-
trons is increased. This sets a particular challenge for the
realization of Dirac points if the quantum dots in the hex-
agonal lattice are occupied by more than a single electron.
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