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Resilience of Quasi-Isodynamic Stellarators against Trapped-Particle Instabilities
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It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency
much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit.
The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-
gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic
instabilities and is thus independent of all other details of the magnetic geometry.
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Stellarators seek to confine fusion plasmas by means of a
three-dimensionally shaped magnetic field. In recent years,
the art of optimizing this field to improve plasma perform-
ance has taken great strides. In particular, it has proven
possible to shape the magnetic field in such a way that the
collisional (so-called neoclassical) transport is reduced al-
most to the level of axisymmetric devices. An important
question that then arises is how this optimization affects the
properties of microinstabilities and the turbulence they tend
to cause. In tokamaks, most of this turbulence is driven by
ion- and electron-temperature gradient (ITG and ETG)
modes and by the trapped-electron mode (TEM). In this
Letter, we demonstrate that one of the most important
classes of orbit-optimized stellarators, so-called quasi-
isodynamic ones, is automatically immune to the ordinary
TEM and to all lower-frequency electrostatic instabilities if
the temperature gradients are small enough compared with
the density gradient and collisions can be ignored. Quasi-
isodynamic stellarators could therefore benefit from reduced
transport both in the neoclassical and turbulent channels.

A toroidal magnetic field B is quasi-isodynamic when
the contours of constant B = |B| are poloidally (but not
toroidally) closed and all collisionless orbits are perfectly
confined [1,2]. Thus, if B = Vi X Va, where ¢ denotes
the toroidal flux, then the radial drift should vanish when
averaged over the bounce time 7,
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where the integral is taken along the field between two
successive bounce points, is then constant on flux surfaces;
i.e., J depends on ¢, the energy and magnetic moment of
the particle, but is independent of «. Wendelstein 7-X is
the first stellarator to approach quasi-isodynamicity, and
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substantially more quasi-isodynamic configurations have
been found computationally in the last few years [2—4].

These devices are so-called maximum-J configurations,
where J has a maximum on the magnetic axis and
dJ/d¢ < 0. In 1968, Rosenbluth [5] had already noticed
that the maximum-J property is beneficial for the stability
of interchange modes with frequencies above the drift
frequency but below the bounce frequency of all plasma
constituents (see also Refs. [6,7]). For typical microinst-
abilities (except the ETG mode), this condition holds for
the electrons but not for the ions. Nevertheless, considering
the full gyrokinetic system of equations, we show in this
Letter that stability prevails far beyond the limit considered
by Rosenbluth.

The physical reason for this remarkable stability has to
do with the direction of the precessional drift of the trapped
particles. If the wave vector perpendicular to the magnetic
fieldisk; = k,Va + k, Vi, we define the magnetic drift
frequency w,, = k, - v,, and the drift wave frequency
W, = (T k,/e,)dInn,/diy for each particle species a in
the usual way, where the density n, and temperature T, are
constant on flux surfaces, and v, = b X ((112L /2)VInB +

vﬁK) /Q,, denotes the drift velocity, with b = B/|B| the

unit tangent vector and x = b - Vb the curvature vector of
the magnetic field. The precession frequency then becomes

G)da = kaVa *Vaa + kd,Vl,b * Vi

where an overbar denotes the bounce average. By design,
the last term vanishes for quasi-isodynamic configurations.
The remaining term can be expressed as a derivative of the
parallel adiabatic invariant, taken at fixed energy and mag-
netic moment,

ke
ZeaTba a'wb,

kaVa *Via =

and the product of the precession and drift wave frequen-
cies [8],
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is therefore negative in a maximum-J configuration with a
density that increases toward the plasma center,

Wy, @y, <O. (1)

Typically, trapped-particle instabilities rely on the reso-
nance between these two frequencies, which occurs due
to so-called ‘““bad” curvature. In quasi-isodynamic con-
figurations, however, we see that trapped particles have
average ‘“‘good” curvature and thus exert a stabilizing
influence. To demonstrate this mathematically, we proceed
from the gyrokinetic system of equations in ballooning
space,
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where ¢ is the electrostatic potential, J, is the zeroth order
Bessel function of the first kind, g, = f, + e;f fa0 de-

notes the nonadiabatic part of the perturbed distribution
function, and the equilibrium distribution function f,q is
Maxwellian. The ratio between the temperature and
density gradients is denoted by 7, = dInT,/dInn,, and
we have written w?, = w,,[1 + n,(x*> — 3/2)], with x> =
m,v?/2T,. The system of equations is closed by the qua-
sineutrality condition,

n,e2 3
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a

Our argument is based on the energy budget of the insta-
bility [9]. We define a quantity

Pa = ealm{(ivllvllga - wdaga)¢*JO}r (4)

which is the rate of gyrokinetic energy transfer from the
electrostatic field to species a. For compactness we have
used the notation

{ ..}:f:’;%[(...)dsv
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where A = v3 /v?B and o = v)/|v|. We thus multiply
the gyrokinetic equation (2) by e, Jo¢*, sum over all
species, integrate over velocity space and along the entire
field line in ballooning space, —o0 <[ << 0o, and take the
imaginary part. We note that with a complex mode fre-
quency w = w, + iy

ImZ{we Jod g, = yzn ¢ f—|¢|2

and
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where b = k3 T,/m,Q?2 and
Fo(b) = }’l;l fJ%faOdSU <1

Thus we obtain a relation that describes the energy budget
of the fluctuations

-3 aci f—(l TR =3P )

which is the generalization to an inhomogeneous plasma
(in ballooning space) of Eq. (F10) in [9]. The right-hand
side represents the total energy input from the fluctuations
into the various species and must be negative for a growing
instability.

Now consider a species a with a bounce frequency wy,
far above the mode frequency, w K w,,, €.g., the elec-
trons in the case of ordinary TEMs or both species in the
case of the collisionless trapped-particle instability of
Rosenbluth [5] and Kadomtsev and Pogutse [10]. We
further assume that 0 < 1, <2/3 (so that w., and wl,
have the same sign for all energies) and that @,, has
the same sign for all orbits. Thus ordering w ~ w., K
ky(T,/m,)"/?, we can expand the distribution function,
84 = 8u + &u + -+ and obtain

e J()qS o — ol

8a0 = faO

T, ®— &y,

and
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Here we have neglected the passing particles, whose re-
sponse is a factor w/kjvy, << 1 smaller than that of the
trapped ones. Substituting these results in the expression
(4) for the energy transfer gives
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Finally, we consider the limit of this expression when
marginal stability is approached, y — 0 +, where we
obtain

2
me
P, =—~

T {6(w —
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If oI, and @,, are of opposite signs, P, > 0 and energy
flows from the electric field fluctuations to plasma species
a, which therefore exerts a stabilizing influence.
Consequently, for instabilities with such low frequencies
that w < wy, for all species, we find that Y P, >0,
which is in contradiction to Eq. (5) at the point of marginal
stability, implying the nonexistence of a marginal stability
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point and, consequently, the absence of an instability. The
case where the real part of the frequency vanishes, w, = 0,
requires slightly more care, since the resonance then occurs
at zero energy and consequently all P, = 0, so that an
instability cannot be ruled out by Eq. (7). However, from
Eq. (6), we obtain for w, = 0

2
Pa = &{[Yljod)lz + L(_wl‘ad)da - 72)
T, ‘7)5111 + 2

X W]fao},

where for small but finite 7, all terms are positive, again in
contradiction to Eq. (5); therefore, a mode with w, = 0 at
marginal stability cannot exist. Hence we conclude that the
collisionless trapped-particle mode is absent; i.e., there is
no instability with frequency far below the ion bounce
frequency. This conclusion is an extension of the result
by Rosenbluth to an arbitrary number of particle species,
finite k| p,, finite temperature gradients up to n, <2/3,
and finite values of w/w,,.

If only the electrons have a bounce frequency that ex-
ceeds w but w ~ wy,;, then we cannot rule out instability by
this argument, but we can say something about the nature
of a possibly occuring mode. We proceed from the gyro-
kinetic equation (2) and treat it as we did to obtain Eq. (5),
only that we do not sum over the species. We then find at
the point of marginal stability

Pu = _wrlm{eugujo¢*} = _wrQa'

The distribution function g, appearing in this quadratic
form Q, can be obtained from the solution of the gyroki-
netic equation (2) given in Refs. [11,12] (correcting for
misprints). In the region of velocity space corresponding to
trapped particles, A > 1/B,,«x, Where B, denotes the
maximum field strength along the field line, the solution is

2e,f00 @ — ol L dl
Zga,t(l) = ; lvyl
Z T, sin(M(w, 1, 1)) Jy, |yl

X cos(M(w, 1, 1})) cos(M(w, 1,,, 1)), (8)

where [;(A) and [,()) are the bounce points (defined by
AB = 1) immediately surrounding [/, and where we have
written /, = max(/, /') and I, = min(/, /') and defined

b dl

M(w, a, b) = W(w — Wyy)

If the growth rate v is taken to be positive, the solution in
the untrapped region is given by

_ eafaO _ T [oo dt
;ga,p(l) T, (a’ w*a) o —1

X [m d—l/ dJycos(M(t, 1, 1). (9)
~oo [y

The quadratic form Q, can be written as a sum of the
contributions from trapped and passing particles of each
species separately, Q, = Q, + Q,,. Substituting the so-
lution (9) for passing particles gives

2
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where vy, = (2T,/m,)"/? is the thermal velocity and
Weos(X, A, 1) ) w  dlJyd (cos)
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Therefore, at marginal stability, where @ has an infinitesi-
mal positive imaginary part, we have

Qap(cu) = [ dx(w — a)iTa)e_"'

T UTa

[0/ “ar Y lmael A

Jj=cos,sin

In ballooning space, there is an infinity of trapping regions
along the field line, which are periodic in a tokamak but
irregularly distributed in a stellarator. When calculating the
contribution from the trapped particles to the quadratic
form Q,, we need to sum over all these trapping wells

and then obtain
] dx(w — »T,)e " x

l/Bmax 1 ZZ dl(ﬁ*.]o

X dA ;
[i/Bmin %Ssm(M(w,ll,lz)) i, J1—AB
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Zeana
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cos(M(w, 1}, 1)) cos(M(w, 1,,, 1)).

(12)

Near marginal stability, an imaginary contribution arises
due to the zeros of the sine in the denominator, and when
splitting the cosines symmetrically, we find

2/meln,

Qulw) = - S [ o - olpe
TaUTa m=—oo
I/Bm('JX
x [ A 5(M(w, Iy, 1) — m)
]/Bmin wells
X |¢t(-x) /\1 a))|27 (13)
with
L dl
¢I(x) A) w) = d ¢J0 COS(M(C(), ll) l))

I, v/1— AB

We now note that for all species a, the forms Q,, and Q,,,
have the character of a weighted average over x of
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(0 — wl,), due to the positive-definiteness of the other
factors. Thus we can write

P,=w [ “(0 — o,)Pos, (x, ®)dx, (14)
0

where Pos,(x, o) is a positive-definite function. If we now
assume the mode travels in the electron diamagnetic direc-
tion, i.e., ww., > 0, we know from Eq. (7) that P, = 0 due
to the lack of resonance. Consequently Eq. (5) then implies
that P, = 0 at the point of marginal stability. However,
from Eq. (14) we obtain P; > 0 since ww,; <0, which
again implies the nonexistence of the marginal stability
point and the absence of this particular mode. Thus any
unstable mode that could arise with w ~ w;; must propa-
gate in the ion direction at marginal stability and as a
consequence from Eq. (7) draw energy from the ions rather
than the electrons (P, >0 follows from Eq. (7), with
Eq. (5) then implying P; < 0). There are thus no ordinary
TEMs, which tend to cause much of the transport observed
in tokamaks. We also note that in the usual treatment of the
“ubiquitous” mode of Coppi and Rewoldt [13], w., -
@4, < 0 implies stability as well. These conclusions hold
as long as 0 < 1, < 2/3 for all species, and collisions may
be ignored, but the dissipative TEM could still be unstable.

Since this argument is essentially only based on the
requirement of quasineutrality and an analysis of the en-
ergy budget, it is independent of all geometric details of the
magnetic field except the condition that the bounce-
averaged curvature should be favorable, dJ/d¢ <0, for
all orbits. This requirement can also be satisfied in other
omnigenous configurations [14,15]. In a tokamak, for ex-
ample, it is achieved if the pressure gradient is steep
enough to cause drift reversal of all trapped particles
[16], but in practice such a steep pressure gradient neces-
sitates taking account of electromagnetic effects. However,
if MHD ballooning modes are stabilized by negative mag-
netic shear (according to the tokamak definition), it is
conceivable that the stabilization of trapped-electron
modes could help explain the transport reduction observed
in internal transport barriers.

It is, of course, difficult to achieve exact quasi-
isodynamicity, but one expects that the drive for trapped-
particle modes should become weak if most orbits satisfy
W, * @g, < 0. One would expect that even approximately
quasi-isodynamic stellarators should have relatively small
trapped-particle instability growth rates, particularly if
central fueling is accessible through pellet injection so
that a stabilizing density gradient can be achieved.
Finally, it should be mentioned that inverting the density
gradient in a tokamak, so as to reverse the sign of w,,, has

long been known to make the collisionless trapped-
electron mode less unstable [17,18], because there are
then fewer electrons with w,, * @, > 0. However, this
stabilization is incomplete since in a typical tokamak there
are always electrons with both signs of @,,.

In summary, whereas in tokamaks most of the transport
in the core tends to be driven by ITG and ETG modes, and
by modes driven unstable by trapped electrons, the latter
are stable in quasi-isodynamic stellarators in the electro-
static and collisionless limit, if 0 < 7, <2/3, and so are
also all such instabilities with frequencies below the ion
bounce frequency.
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