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After recapitulating the covariant formalism of equilibrium statistical mechanics in special relativity

and extending it to the case of a nonvanishing spin tensor, we show that the relativistic stress-energy tensor

at thermodynamical equilibrium can be obtained from a functional derivative of the partition function with

respect to the inverse temperature four-vector �. For usual thermodynamical equilibrium, the stress-

energy tensor turns out to be the derivative of the relativistic thermodynamic potential current with respect

to the four-vector �, i.e., T�� ¼ �@��=@��. This formula establishes a relation between the stress-

energy tensor and the entropy current at equilibrium, possibly extendable to nonequilibrium

hydrodynamics.
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One of the best known formulae of statistical mechanics
states that, in the grand-canonical ensemble, the mean
value of the energy density can be obtained as a derivative
of the logarithm of the partition function with respect to the
inverse temperature. In terms of densities, the energy den-
sity � is the derivative of the pressure with respect to the
inverse temperature, i.e.,

� ¼ �@ðp=TÞ
@ð1=TÞ

���������=T
:

In relativity, the mean value of the energy density is the
time-time component of the stress-energy tensor, so the
question arises whether it is possible to obtain the full
stress-energy tensor, and not just its time-time component,
as a sort of derivative of the ‘‘density’’ of the partition
function. In this Letter we provide an answer to this ques-
tion and we will show that

T�� ¼ � 6@��

6@��

��������eq
; (1)

that is, the stress-energy tensor can be obtained as a varia-
tional Euler-Lagrange derivative (in a sense which will
become clear later) at thermodynamical equilibrium of
the relativistic generalization of the density of the thermo-
dynamic potential logZ, a vector current �� which is
linearly related to the entropy current.

In other words, Eq. (1) establishes a relation between the
mean value of the stress-energy tensor and the relativistic
entropy current at equilibrium. If this relation could be
extended to nonequilibrium situations, one would have a
tool to determine entropy current from the expression of
the stress-energy tensor, which is one of the main problems
of dissipative relativistic hydrodynamics [1,2] (for a recent
discussion see also Ref. [3]). The expression of entropy
current in nonequilibrium is actually used as a means to
determine the structure of the stress-energy tensor itself

and the generalization of Eq. (1) would therefore be very
important.
Before proving Eq. (1), we will recapitulate the fully

covariant formulation of equilibrium in relativistic statis-
tical mechanics, including the possibility of a nonvanishing
spin tensor, hence of a nonsymmetric stress-energy tensor.
We start with a brief summary of equilibrium thermody-
namics of a system with angular momentum, which macro-
scopically corresponds to a rigidly rotating fluid [4]. A
detailed discussion of this system can be found in Ref. [5].
Thermodynamical equilibrium occurs when entropy is

maximal. The maximization of S ¼ �trð�̂ log�̂Þ with the
constraint of fixed, constant mean energy, charge, and
mean total angular momentum leads, as is well known, to
the density operator [4,6]

�̂ ¼ 1

Z
exp½�Ĥ=T þ!Ĵz=T þ�Q̂=T�; (2)

where Z ¼ trðexp½�Ĥ=T þ!Ĵz=T þ�Q̂=T�Þ. The
physical meaning of T is that of temperature of an energy
reservoir and ! that of an angular velocity of an angular
momentum reservoir in contact with the system. In quan-
tum relativistic field theory, the operators in Eq. (2) can be
written as integrals over some space region V:

Ĥ ¼
Z
V
d3xT̂00ðxÞ; Q̂ ¼

Z
V
d3xĵ0ðxÞ;

Ĵz ¼ Ĵ12 ¼
Z
V
d3x½x1T̂02ðxÞ � x2T̂01ðxÞ þ Ŝ0;12ðxÞ�; (3)

Ŝ being the spin tensor which is antisymmetric in the last
two indices. The operator of Eq. (2) can be written in a
fully covariant form. First define

� ¼ ð1=TÞð1;!� xÞ: � ¼ �=T: (4)

with ! ¼ !k̂ as the constant angular velocity vector
directed along the z axis. Then

!�� ¼ !=Tð�1
��

2
� � �2

��
1
�Þ; (5)
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which is the acceleration tensor for a rigid rotation [5].
Finally, define the normal versor of the three-dimensional
spacelike hypersurface V (embedded in Minkowski space-
time) appearing in Eq. (3) as t̂ and its measure d�� �
d3xt̂�. Hence, we can rewrite Eq. (2) as

�̂ ¼ 1

Z
exp

�Z
V
d��

�
�T̂���� þ 1

2
Ŝ�;��!�� þ �ĵ�

��
:

The four-vector � given by Eq. (4) is then, by construction,

the inverse temperature four-vector, and 1=
ffiffiffiffiffiffi
�2

p ¼
T=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k!� xk2p � T0 is the invariant temperature, i.e.,

the temperature measured by a thermometer moving with
the rigid velocity field!� xwith respect to the thermostat
at temperature T [1,5]. The latter expression does not fulfill
yet the request of full covariance as it apparently depends
on a particular hypersurface V. In fact, if the divergence of
the integrand vanishes and if its flux at the boundary of V,
i.e., @V, also vanishes, the spacelike hypersurface is arbi-
trary and the density operator can be finally written as

�̂ ¼ 1

Z
exp

�Z
�
d��

�
�T̂���� þ 1

2
Ŝ�;��!�� þ �ĵ�

��
;

(6)

where � is a general, arbitrary, spacelike hypersurface
bounded by the same @V. The covariant form of Eq. (6)
of the equilibrium statistical operator, to our knowledge,
was first written down by Weldon [7]; the above form
generalizes his formula in that it includes a nonvanishing
spin tensor, which is generally needed if the stress-energy
tensor is not the Belinfante symmetrized stress-energy
tensor [8].

The two aforementioned conditions on the integrand
also ensure the stationarity of the density operator with
respect to any inertial frame, because �̂ is unchanged in
Eq. (6) going from the hypersurface VðtÞ to Vðtþ �tÞ. The
divergence of the integrand reads

@�

�
�T̂���� þ 1

2
Ŝ�;��!�� þ �ĵ�

�

¼ �T̂��@��� þ 1

2
!��@�Ŝ

�;�� þ 1

2
Ŝ�;��@�!��

þ ĵ�@��; (7)

where we have taken into account the continuity equations
of the stress-energy tensor and the current. As � ¼ �=T
and !�� [see Eq. (5)] are constant, the above expression
reduces to, after separating the symmetric and antisym-
metric part of the stress-energy tensor

� 1

2
T̂��
S ð@��� þ @���Þ � 1

2
T̂��
A ð@��� � @���Þ

þ 1

2
!��@�Ŝ

�;��: (8)

Because of the continuity equation of the angular momen-
tum tensor

@�Ĵ
�;�� ¼ @�Ŝ

�;�� þ 2T̂��
A ¼ 0: (9)

Eq. (8) vanishes if

@���þ@��� ¼ 0; !�� ¼�1

2
ð@����@���Þ: (10)

It can be readily checked that the four-vector � and the
tensor ! in Eqs. (4) and (5) fulfill both conditions above.
Hence, the divergence of the integrand does vanish:

@�

�
�T̂���� þ 1

2
Ŝ�;��!�� þ �ĵ�

�
¼ 0: (11)

The second condition, i.e., the vanishing at the boundary,

0 ¼
Z
boundary

d��

�
�T̂���� þ 1

2
Ŝ�;��!�� þ �ĵ�

�

¼
Z t1

t0

Z
@V

dSn�

�
�T̂���� þ 1

2
Ŝ�;��!�� þ �ĵ�

�
; (12)

must be enforced through suitable boundary conditions of
the quantum fields.
Instead of the equilibrium density operator of Eq. (2), we

can use the general covariant formula of Eq. (6) as a
starting point and look for the implications on �, !, and
� of thermodynamical equilibrium conditions, i.e., of
Eqs. (11) and (12); in principle, with this approach, we
could find new forms of equilibrium distributions. For the
divergence to vanish, according to Eq. (7), one needs to
have:

@�� ¼ 0; @�!�� ¼ 0;

and, again, the equations of Eq. (10). The first equation of
Eq. (10) entails that the inverse temperature four-vector
ought to be a Killing vector, a well known condition for
equilibrium [2,9]. Together with the second equation of
Eq. (10), this leads to [10]

�� ¼ b� þ!��x
� (13)

with b the constant four-vector. This expression of the
inverse temperature four-vector comprises all possible
forms of relativistic thermodynamical equilibria; the rotat-
ing case of Eq. (4) actually corresponds to b� ¼ ð1=T; 0Þ
and ! given by Eq. (5).
By using Eq. (6) one can write down the entropy

S ¼ logZþ
Z
�
d��

�
T���� � 1

2
S�;��!�� � �j�

�
;

(14)

where the symbols without hats denote the mean values of

quantum operators [i.e., trð�̂ ÂÞ ¼ A]. [It should be pointed
out that the mean value of operators involving quantum
relativistic fields are generally divergent (e.g., T00 for a
free field has an infinite zero point value). To remove the
infinities, the mean values must be renormalized, which
can be simply done for free fields by using normal ordering
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in all expressions, including the density operator itself.
Henceforth, it will be understood that all the mean values
of operators are the renormalized ones.] For an entropy
current to exist in relativistic thermodynamics [1,2] so that
the total entropy can be written as S ¼ R

� d��s
�, the

logarithm of the partition function must be written as an
integral over the same hypersurface� of a vector field��,
hereby defined as the thermodynamic potential current

logZ ¼
Z
�
d���

�; (15)

so that the entropy current reads

s� ¼ �� þ T���� � 1

2
S�;��!�� � j��: (16)

[Note that in Eq. (15) logZ is meant to be the renormalized
one; see previous discussion.] In principle, the existence of
the thermodynamic potential current could be proved
working out the trace of Z�̂ in Eq. (6), but this requires

lengthy manipulations of the commutators of T̂�� and so
we rather assume Eq. (15) invoking the existence of an
entropy current. At equilibrium, the four-vector field �
must be divergence-free and it must have vanishing out-
ward flux through @� for the partition function of Eq. (15)
to be stationary and independent of the spacelike hyper-
surface �. In view of Eq. (16), the condition @��

� ¼ 0 is

indeed a consequence of the requirement of vanishing
entropy production (@�s

� ¼ 0) at equilibrium. We point

out that the thermodynamic potential current is not
uniquely defined, as one may add a divergence of an
antisymmetric tensor field with suitable boundary condi-
tions to obtain the same partition function in Eq. (15).

The mean value of the stress-energy tensor at equilib-
rium reads

T��ðxÞ ¼ trð�̂T̂��Þ
¼ 1

Z
tr

�
T̂��ðxÞ exp

�Z
�
d��

�
�T̂����

þ 1

2
Ŝ�;��!�� þ �ĵ�

���
; (17)

where Eq. (6) has been used. Let us now fix the spacelike
hypersurface � and write d�� ¼ d�n�, where n� is its

normal timelike unit vector. One can obtain a contraction
of the mean value of the stress-energy tensor with the
normal vector n� by taking a functional derivative

with respect to the four-temperature vector � seen as a
function of x, keeping ! and � fixed, with respect to the
measure d�:

�n�T
��ðxÞ ¼ 1

Z

�

���ðxÞ tr
�
exp

�Z
�
d�n�

�
�T̂����ðxÞ

þ 1

2
Ŝ�;��!�� þ �ĵ�

�����������!;�

¼ � logZ½��
���ðxÞ

��������!;�
: (18)

Formally, the above formula can be shown by using the
expansion of the exponential of the sum of operators
(Zassenhaus formula) and taking advantage of the ciclicity
of the trace. While the left hand side depends on a vector
n�, which is arbitrary, the rightmost side is not manifestly

dependent on it. In fact, the functional derivative of
the partition function includes a hidden dependence on
the normal vector as the functional derivation implies the
choice of a measure, hence of a hypersurface � and a
corresponding normal vector.
In view of Eq. (15)

� logZ½��
���ðxÞ

��������!;�
¼ �

���ðxÞ
Z
�
d���

�

��������!;�
: (19)

At equilibrium, the thermodynamic potential current de-
pends on the equilibrium values of �, !, and �. Taking the
functional derivative means moving the field � slightly out
of equilibrium, i.e., �ðxÞ ¼ �eqðxÞ þ ��ðxÞ, which may

introduce dependences of �� on the derivatives of the �
field. As it is well known from the theory of functional
derivation, provided that the perturbation �� is chosen so
as to fulfill suitable boundary conditions, Eq. (19) yields

� n�T
��ðxÞ ¼ n�

�
@��

@��

� @	
@��

@ð@	��Þ þ � � �
���������eq

; (20)

where the ellipses . . . stand for terms involving higher-
order derivatives of the � field. However, since the vector
n� is an arbitrary timelike field, the straightforward con-

sequence of (20) is

T�� ¼ � 6@��

6@��

��������eq
; (21)

i.e., the stress-energy tensor is minus the Euler-Lagrange
derivative, denoted by 6@ and defined by Eq. (20), of the
thermodynamic potential current.
Similarly, it can be shown that

S �;�� ¼ 6@��

6@!��

��������eq
; j� ¼ 6@��

6@�
��������eq

: (22)

We are now going to work out the above formulae in the
simplest instance of thermodynamic equilibrium, which is
the familiar one with b� ¼ 1=T0u�, with u� ¼ const nor-

malized four-velocity, � ¼ �=T ¼ �0=T0 ¼ const, and
! ¼ 0, i.e., no rotation. Thus �� ¼ b� ¼ 1=T0u

� with
T0 the invariant temperature by definition. The resulting

density operator �̂ ¼ 1=Z exp½�P̂�þ Q̂�� is invariant for
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translations, implying that all mean values of fields (in-
cluding stress-energy tensor) are constant in spacetime.
The thermodynamic potential current �� at equilibrium
is a vector function of �, !, and �, but since � is the only
nonvanishing vector field, it can only be of the form

�� ¼ pð�2; �Þ��; (23)

where the physical meaning of the scalar function pð�2; �Þ
is to be found. The above form of the thermodynamic
potential current is unambiguous because, due to the con-
stancy of the arguments, any additional divergence of an
antisymmetric tensor field vanishes. For this special kind of
equilibrium, it was written down first in Ref. [2].

In Eq. (21), all terms of the Euler-Lagrange derivative of
the � function involving derivatives vanish at equilibrium
because, e.g.,

@	
@��

@ð@	��Þ
��������eq

¼ @��

@��@ð@	��Þ@	�
�

��������eq

þ @��

@@
�
�@ð@	��Þ@	@
�

�

��������eq
þ���; (24)

and since all derivatives of the � field vanish at equilib-
rium, this term altogether vanishes. The same applies to
possible terms involving a derivative of the � function
with respect to higher-order derivatives of the � field.
Furthermore, it is not difficult to realize that the only
term of @��=@�� contributing at equilibrium is the de-
rivative of Eq. (23) itself, that is,

T�� ¼ �@��

@��

��������eq
¼ �@��jeq

@��

; (25)

and, similarly,

j� ¼ @��jeq
@�

¼ @p

@�

���������2
�� � nu�; (26)

where Eq. (23) has been used. By using Eqs. (25) and (23)
we get

T�� ¼ �2
@p

@�2

���������
���� � pg��: (27)

This form would be enough to identify p as the pressure,
because if u ¼ ð1; 0Þ then p is the diagonal element of the
spacial part of the stress-energy tensor. This identification
is confirmed by the expression of the proper energy density
� obtained from Eq. (27)

� � T��u�u� ¼ �2
@p

@�2

���������
�2 � p; (28)

and Eq. (27) turns into the familiar

T�� ¼ ð�þ pÞu�u� � pg��: (29)

Equation (28), that is, 2@p=@�2j� ¼ �ð�þ pÞ=�2, is just

an alias of the Gibbs-Duhem relation @p=@T0j�0
¼ s

which can be readily checked taking into account that the
above derivative is taken by keeping � ¼ �0=T0 fixed and
that T0s ¼ �þ p��0n (see below). Similarly, Eq. (26)
is an alias of the relation @p=@�0jT0

¼ n.

Finally, we show that all known thermodynamic rela-
tions involving proper entropy density are also recovered.
From Eq. (16) with ! ¼ 0, using Eq. (23) we get, by
contracting with the four-velocity u

s � s�u� ¼ p
ffiffiffiffiffiffi
�2

q
þ �

ffiffiffiffiffiffi
�2

q
� �n; (30)

which, by using
ffiffiffiffiffiffi
�2

p ¼ 1=T0 and � ¼ �0=T0 reads as the
familiar relation T0s ¼ �þ p��0n. We can obtain the
differential of entropy current (difference between nearby
equilibrium states with � and � being the understood
parameters)

ds� ¼ d�� þ T��d�� þ ��dT
�� � �dj� � j�d�: (31)

Since

d�� ¼ @��

@��

d�� þ @��

@�
d�; (32)

in view of Eqs. (25) and (26), Eq. (31) turns into

ds� ¼ ��dT
�� � �dj�: (33)

This equation was obtained by Israel and Stewart [2]
resorting to several assumptions concerning the familiar
form of thermodynamical equilibrium, including Eq. (29)
itself; in fact, in our method, both Eqs. (33) and (29) are
consequences of Eq. (21), derived in turn from the general
form of statistical density operator of Eq. (6), which is
more economical and transparent. Contracting the above
formula with u� we get

u�ds
� ¼ ds� s�du� ¼ ds� ð�� þ T���� � �j�Þdu�
¼

ffiffiffiffiffiffi
�2

q
u�u�dT

�� � u��dj
�: (34)

The expression within parentheses is parallel to u�

and this makes the whole term vanishing as u�du� ¼
ð1=2Þdu2 ¼ 0. For the same reason, one has u�u�dT

�� ¼
dðu�u�dT��Þ ¼ d� and �u�dj

� ¼ �dn. Therefore,

Eq. (33) becomes the well known

T0ds ¼ d���0dn: (35)

We stress that all of Eqs. (23)–(35) apply to the thermo-
dynamical equilibrium without rotation, i.e., with! ¼ 0 in
Eq. (2). The application of Eq. (21) to the most general
form of equilibrium [Eq. (13)], and to slightly out-of-
equilibrium situations may shed light on a general relation
between entropy current and the mean values of stress-
energy, spin tensors, and the charge current vector. This
will be the subject of further studies.
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