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Fock states with photon numbers n up to 7 are prepared on demand in a microwave superconducting

cavity by a quantum feedback procedure that reverses decoherence-induced quantum jumps. Circular

Rydberg atoms are used as quantum nondemolition sensors or as single-photon emitter or absorber

actuators. The quantum nature of these actuators matches the correction of single-photon quantum jumps

due to relaxation. The flexibility of this method is suited to the generation of arbitrary sequences of Fock

states.
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The preparation of nonclassical field states and their
protection against decoherence is an important aspect of
quantum physics and of its application to information
science. Among the proposed methods, including error
correction [1], decoherence-free subspaces [2], and reser-
voir engineering [3], quantum feedback [4–6] is particu-
larly promising. Its principle is to drive the quantum
system towards a target state by the repeated action of
a sensor-controller-actuator loop. The sensor performs
quantum measurements and provides information to the
controller. Taking into account the backaction of the mea-
surement, the controller then estimates the system’s state
and programs the actuator to drive the system as close as
possible to the target. A given feedback algorithm can in
principle protect a wide class of target states. The operating
point can be changed at any time and the system driven
through a programmed trajectory in its Hilbert space.

Photon number (Fock) states are appealing targets for
quantum feedback operation. They combine a theoretical
and intuitive simplicity (jni is an eigenstate of the field
Hamiltonian with n quanta) with intrinsically nonclassical
features (their Wigner functions take negative values for
n � 1). When coupled to an environment, Fock states
rapidly lose their nonclassicality with a time constant Tn ¼
Tc=n, where Tc is the lifetime of the field mean energy [7].
Hence, large n Fock states, whose decay time scale is much
shorter than Tc, are important tools for the exploration of
decoherence at the quantum-classical boundary [8].

The most intuitive algorithm for quantum feedback gen-
eration and protection of Fock states combines single-
photon emission and absorption by quantum two-level
systems together with a quantum nondemolition (QND)
photon counting sensor. Starting from vacuum, repeated
photon emissions make the field climb the ladder of Fock
states until the sensor recognizes that the target is reached.
When an environment-induced single-photon quantum
jump occurs, the sensor detects it and the controller triggers
the action of either an emitter or absorber to correct for it.

Resonant actuators and QND sensors have already been
used separately to prepare Fock states in a time short
compared to Tn. Repeated photon emissions by resonant
two-level actuators have been achieved in cavity [9] and
circuit QED experiments [10]. QND photon counting by
repeated atomic sensor measurements has collapsed a co-
herent field into a Fock state with random n and revealed its
subsequent quantum jumps [11]. Single-photon actuators
and QND sensors have never been combined in a feedback
loop. The only steady-state quantum feedback procedure
so far has stabilized Fock states with a coherent source as
an actuator [12]. The performance of this scheme was
limited by the inability of the classical actuator to correct
for a quantum jump in a single step.
We report here the implementation of a quantum feed-

back algorithm for the preparation and protection of Fock
states up to n ¼ 7 in a microwave cavity QED experiment
using circular Rydberg atoms [13]. In the dispersive
regime, they act as QND sensors of the field in the cavity.
At resonance, they can absorb or emit single photons into
the cavity depending on the prepared state.
The experimental setup is depicted in Fig. 1. The mi-

crowave field (frequency � ¼ 51 GHz) is stored in the

superconducting Fabry-Perot cavity C (Tc ¼ 65 ms)

cooled at 0.8 K (average number of blackbody photons

nth ¼ 0:05) [14]. Rydberg atoms are prepared in B into the

circular state jgi of principal quantum number 50 by a

pulsed process repeated at Ta ¼ 82 �s time intervals. This

laser- and rf-induced process also selects the atomic ve-

locity (v ¼ 250 m=s). The small number of atoms in each

sample obeys a Poisson law.
A voltage V applied across the cavity mirrors tunes the

atoms in or out of resonance with C by Stark shifting the
transition between jgi and the nearest higher-lying circular
state jei. In this way, we individually set each atomic
sample as a dispersive sensor or a resonant actuator.
After crossing C, the detection of each atom in jei or jgi
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by state-selective field ionization in D provides binary
information.

The cavity C is placed between two low-Q cavities, R1

and R2, which are used to manipulate the atomic state by
classical resonant microwave pulses (sources S1 and S2).
The experiment is controlled by a computer K (ADwin
Pro-II), which processes binary information from D and
uses it to adjust for each sample the settings of S1, S2, and
V. When K decides to send a sensor in C, V is set to make
the atom-field interaction dispersive, and S1 and S2 are set
for �=2 pulses. The R1-R2 combination is then a Ramsey
interferometer providing QND information on n by mea-
suring the dispersive phase shift experienced by the atom in
C [11].

When K decides to send an emitting actuator, it applies
with S1 a � pulse realizing the jgi ! jei transformation in
R1, and it sets V so that the atom interacts resonantly with
C during an adjustable time. The source S2 is switched off
and the atom is directly detected in D. For an absorbing
actuator, S1 and S2 are switched off and the resonant
interaction time is controlled by V.

The first task of K is to estimate the field state after the
detection of each sample, based on all available informa-
tion. Since the initial vacuum and the actuators bear no
phase information, the field density matrix remains diago-
nal in the fjnig basis and K needs only to update the photon
number distribution pðnÞ after each detection. From pðnÞ,
K evaluates the distance d ¼ P

nðn� ntÞ2pðnÞ ¼ �n2 þ
ð �n� ntÞ2 to the target Fock state jnti (�n2 and �n are the
photon number variance and mean value, respectively).

After the detection of a sensor in state j ¼ 0 or 1 (jei or
jgi, respectively), pðnÞ becomes, according to Bayes’ law
and within a normalization factor, pðnÞ � �sðjjnÞ, where
�sðjjnÞ is the conditional probability for detecting the
sensor in j when there are n photons. Ideally, �sðjjnÞ ¼
½1þ cosð�0nþ ’r � j�Þ�=2, where �0 is the phase shift
per photon accumulated by the atomic coherence in C, and
’r is the adjustable phase of the Ramsey interferometer

[12]. In the experiment, due to various imperfections,
�sðjjnÞ becomes ½1þð�1Þjbsþcscosð�0nþ’r�j�Þ�=2,
where the offset bs ¼ 0:02� 0:002 and the contrast cs ¼
0:75� 0:03 are determined in calibration experiments.
The resonant actuators and C perform a Rabi oscillation

between the joint states je; ni and jg; nþ 1i at a frequency
proportional to

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
. After the detection of an actuator,

prepared in j and detected in k (j; k ¼ 0; 1 for jei and jgi,
respectively), the photon number distribution pðnÞ
becomes, within a normalization, pðnþ j� kÞ �
�aðj; kjnþ j� kÞ, where �aðj; kjnþ j� kÞ is the
conditional probability of the j ! k transition in the field

of nþ j� k photons. Ideally, �aðj; kjnþ j� kÞ ¼ f1þ
cos½�0tj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� kþ 1

p þ ðj� kÞ��g=2. Here, �0=2� ¼
47:9 kHz is the vacuum Rabi frequency for an atom at
cavity center, and tj ¼ te or tg where te and tg are effective

interaction times taking into account the atomic motion
through the Gaussian structure of the mode in C.
Experimental imperfections affect the contrast of these
oscillations in an n-dependent way and slightly offset
them. The actual �aðj; kjnÞ are obtained by recording
Rabi oscillations in calibration experiments.
The state estimation must also take into account the

measured detection efficiency (�d ¼ 0:25). For instance,
if no atom is detected, it is possible that the sample was
actually empty [pðnÞ being then unchanged] or that it
contained one, or even two undetected atoms. The control-
ler K updates pðnÞ as a weighted average of the modified
photon number distributions corresponding to all possible
events leading to the actual detection. The probabilities of
these events are inferred by Bayes’ law, knowing �d and
the mean atom number m in a sample [15]. Undetected
sensors have no effect on state estimation, since a QND
atom does not modify pðnÞ on the average. Undetected
actuators must be considered, the modified pðnÞ being a
weighted average of the ones that would be obtained if the
missed atom would have been detected in jei or jgi. If two
actuators are crossing C together (0, 1, or 2 being de-
tected), the updating formulas take into account the modi-
fied Rabi oscillation and the possibility of simultaneous
two-photon emission or absorption.
The state estimation includes cavity damping during the

time interval Ta towards the thermal equilibrium at the
mirrors’ temperature [15]. Finally, K takes into account
the feedback loop delay—i.e., the effect of the yet unde-
tected actuator samples that are on their way between C
and D—by tracing over their states.
Getting information on pðnÞ requires many sensors

(each providing one bit), whereas adding or subtracting a
photon ideally demands a single resonant actuator atom.
Thus, a feedback loop consists of a sequence of Ns sensor
samples followed by Nc < Ns control samples whose op-
erating mode is decided by K.
After each detection and state estimation, K makes or

updates a decision about the fate of all control samples

FIG. 1 (color online). Scheme of the experimental setup.
Toroids represent a stream of equidistant atomic samples sent
across the cavity C. Their two colors schematically refer to the
two types of atoms, namely, dispersive sensors and resonant
actuators, used in the quantum feedback protocol.
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located immediately beforeR1 or betweenR1 andC. In the
first case,K decides upon the sample mode (sensor, emitter,
or absorber). For actuators between R1 and C, K uses
additional information acquired after the selection of their
modes (emitter or absorber) to decide to let them interact
resonantly with C as previously planned or to cancel their
action by keeping them off resonance. The controller esti-
mates the average photon number distribution resulting
from the pending interactions of the control samples with
C for each of these choices, and selects that corresponding
to the minimum distance d to the target.

The free experimental parameters are the phase shift per
photon �0, the Ramsey phase ’r, the actuator interaction
times tj, the number of sensor and control samples Ns and

Nc, and the corresponding average number of atoms per
sample ms and mc. The phase shift �0 ¼ 0:252� � rad,
corresponding to an atom-cavity detuning �=2� ¼
244 kHz, is set close to �=4, allowing K to distinguish
among eight different photon numbers [11]. The Ramsey
interferometer phase, ’r ¼ �=2��0nt, is set by fine
Stark tuning of the atomic frequency. It corresponds ideally
to �sðjjntÞ ¼ 1=2 and provides the best sensitivity to
photon number measurements around nt. We chose ms ¼
1:3 and mc ¼ 0:5 (the lower value for the control samples
reduces the probability of two-photon emission or absorp-
tion). The other parameter values, te ¼ 1:6�=�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt þ 1

p
,

tg ¼ 2:4�=�0
ffiffiffiffiffi
nt

p
, Ns ¼ 12, and Nc ¼ 4 are optimized by

numerical simulations.
The value of te is close to 2�=�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt þ 1

p
. This corre-

sponds to a ‘‘trapping state’’ condition [16], for which an
emitting actuator would ideally leave the target state in-
variant. Due to the finite contrast of the experimental Rabi
oscillations, the emission probability does not cancel at the
trapping state condition. Choosing a slightly lower value
for te maintains a relatively small unwanted emission
probability for n ¼ nt while optimizing the probability of
correcting emissions when n ¼ nt � 1. Similar arguments
explain qualitatively the value of tg, slightly larger than

that corresponding to a trapping state condition.
Figure 2 shows the data of a single realization of the

experiment with nt ¼ 4. It presents, as a function of time,
the detected sensor states, the estimated distance d, the
controller decisions to send emitter or absorber actuator
samples, and finally, the evolution of the photon number
distribution estimated by K together with its average value.
Starting from vacuum at t ¼ 0, emitting samples are re-
peatedly sent until d comes close to zero. The photon
number distribution is then peaked on n ¼ nt, with
pðntÞ � 0:8–0:9. Around t ¼ 50 ms, a downward quantum
jump to n ¼ 3 triggers the sending of a few emitter
samples, which rapidly restore the target state. Close to t ¼
70 ms, another downward jump is overcorrected, leading
to n ¼ 5. Absorbers are then sent until the restoration of
the target. Four thousand similar trajectories have been
recorded for each value of nt from 1 to 7.

In order to gain intuitive insight into the workings of the
feedback, we plot for nt ¼ 4 in Fig. 3 the fractions of
emitters, absorbers, and sensors chosen by K in the control
samples, versus the mean photon number �n estimated at a
given time. The mere inspection of this figure leads to a
simple rule. When �n < nt � 0:4 ( �n > nt þ 0:6), K essen-
tially programs emitter (absorber) samples, and for nt �
0:4 � �n � nt þ 0:6, it rather decides to send sensor
samples, which do not affect �n on average, but contribute
to reducing �n and thus d. The domain of �n values in
which sensors are preferred has a �n � 1 width and is
centered on a value slightly larger than nt, reflecting the

FIG. 2 (color online). Single realization of the feedback ex-
periment with nt ¼ 4. The frames present versus time, from top
to bottom, the detected sensor states (upward bars for e, down-
ward bars for g), the distance d to the target, the actuators sent by
K (red bars for emitters, blue bars for absorbers), and the photon
number distribution pðnÞ inferred by K (color and gray scale)
together with its average value (solid black line).

FIG. 3 (color online). Probabilities of the choices made by K
for the control atoms (emitter: dashed red line; sensor: solid
green line; absorber: dash-dotted blue line) as a function of the
estimated mean photon number �n (data inferred from 4000
realizations of the experiment over 140 ms with nt ¼ 4).
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fact that field relaxation alone reduces �n. The fractions of
actuators and sensors vary rapidly at the boundary of these
domains, in narrow ranges of �n values. Our feedback
algorithm thus essentially operates according to the simple
intuitive procedure with ideal single-photon actuators out-
lined in the introduction. When it estimates that �n falls
outside the �n ¼ 1 range around nt, it concludes that a
quantum jump is likely to have happened and attempts to
correct for it by adding or subtracting a photon.

The performance of the feedback procedure is obtained
by reconstructing the average �pðnÞ distribution, indepen-
dently from the estimation made by K, and by comparing it
to the reference Poisson distribution with nt photons on the
average shown in Fig. 4(a). The loop is interrupted at t ¼
140 ms. We then send a few QND sensor samples with
Ramsey phase settings optimizing the discrimination of
eight photon numbers [11]. From 4000 realizations of
this experiment, we reconstruct �pðnÞ, plotted in Fig. 4(b)
between n0 and n0 þ 7 around nt, by a maximum like-
lihood procedure [8]. The measured �pðntÞ, i. e., the fidel-
ities with respect to the target state, are about twice those of
the corresponding Poisson distribution, and the �pðnÞ dis-
tributions are clearly sub-Poissonian.

A better performance is obtained when using the state
estimation by K for interrupting the feedback at a proper
time. The histograms in Fig. 4(c) present for each nt the
�pðnÞ distributions obtained with 4000 sequences inter-
rupted when K estimates that pðntÞ> 0:8. The obtained
fidelity is close to the expected 0.8 value up to nt ¼ 3
and always remains larger than that of the histograms in
Fig. 4(b). From a statistical analysis of these trajectories,
we also infer the convergence time towards the target. For
nt ¼ 3, 63% of the trajectories have reached the 0.8 fidelity
threshold within 27 ms. This time is twice as short as that
observed with classical actuators [12].

To illustrate the flexibility of the procedure, K is
programmed to change nt in real time according to a preset
sequence f3; 1; 4; 2; 6; 2; 5g for the single trajectory

presented in Fig. 5. The controller switches from one nt
value to the next when it estimates that pðntÞ> 0:8. It
accordingly adapts the Ramsey phase ’r to the new target.
The pðnÞ distribution and its average �n (thick black line)
follow rapidly the changes in the target (thin blue line).
The operation of the feedback mechanism can also be

viewed as that of a quantum micromaser [16] pumped by
the actuators and actively locked to a Fock state. Based on
the information provided by the sensors, the controller
adjusts in real time the atomic medium gain by choosing
the fraction of emitters and absorbers. In Ref. [12], the
controller was rather injecting coherent microwave pulses
into the cavity. The mismatch between the classicality
of the source and the quantumness of the target limited
the procedure to low photon number states. Here in con-
trast, the quantum nature of the single resonant atom
source allows us to correct more rapidly and precisely
decoherence-induced quantum jumps. We lock efficiently
the micromaser operation to higher Fock states, making
them available for fundamental studies and quantum infor-
mation experiments.
The authors acknowledge fruitful discussions with P.

Rouchon and support from the European Research

FIG. 4 (color online). Histograms of photon number distribution as a function of the target photon number nt. (a) Reference Poisson
distribution with nt photons on the average. (b) Photon number distribution �pðnÞ measured by an independent QND process after
interrupting the feedback loop at t ¼ 140 ms. (c) Photon number distribution �pðnÞ measured when K estimates that pðntÞ> 0:8. For
(b) and (c), �pðnÞ is measured from n0 to n0 þ 7, with n0 ¼ 0 for nt � 5 and n0 ¼ 2 for nt > 5.

FIG. 5 (color online). Programmed sequence of Fock states.
The target nt varies stepwise as indicated by the thin line. The
pðnÞ distribution inferred by K is shown in color and gray scale,
together with its average value (thick line).

PRL 108, 243602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

243602-4



Council (DECLIC project), the European Community
(AQUTE project), and the Agence Nationale de la
Recherche (QUSCO-INCA project).

*igor.dotsenko@lkb.ens.fr
[1] A.M. Steane, Phys. Rev. Lett. 77, 793 (1996).
[2] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev.

Lett. 81, 2594 (1998).
[3] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77,

4728 (1996).
[4] H.M. Wiseman, Phys. Rev. A 49, 2133 (1994).
[5] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S.M.

Tan, Phys. Rev. A 62, 012105 (2000).
[6] H.M. Wiseman and G. J. Milburn, Quantum Measurement

and Control (Cambridge University Press, Cambridge,
2009).

[7] S. Haroche and J.M. Raimond, Exploring the Quantum:
Atoms, Cavities and Photons (Oxford University Press,
Oxford, 2006).

[8] M. Brune, J. Bernu, C. Guerlin, S. Deléglise, C. Sayrin, S.
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S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche,

Nature (London) 448, 889 (2007).
[12] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T.

Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H.

Amini, M. Brune, J.-M. Raimond, and S. Haroche,

Nature (London) 477, 73 (2011).
[13] J.-M. Raimond, M. Brune, and S. Haroche, Rev. Mod.

Phys. 73, 565 (2001).
[14] S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S.
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