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We compute the static self-energy of SU(3) gauge theory in four spacetime dimensions to order �20 in

the strong coupling constant �. We employ lattice regularization to enable a numerical simulation within

the framework of stochastic perturbation theory. We find perfect agreement with the factorial growth of

high order coefficients predicted by the conjectured renormalon picture based on the operator product

expansion.
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Little is known about properties of quantum field
theories from first principles. This is particularly so for
asymptotically free gauge theories such as quantum gluo-
dynamics. One of the most salient features of this theory is
the confinement of charged objects. Yet this property has
not been proven, and the best evidence comes from the
linearly rising static potential at large distances obtained
in lattice simulations. Another expected property is the
asymptotic nature of perturbative weak coupling expan-
sions. In four-dimensional non-Abelian gauge theories,
one particular pattern of asymptotic divergence should be
determined by the structure of the operator product expan-
sion (OPE). It is usually named renormalon [1] or, more
specifically, infrared renormalon. Its existence has also not
been proven but only tested assuming the dominance of
�0 terms, which amounts to an effective Abelianization of
the theory, or in the two-dimensional OðNÞ model [2],
where it is suppressed by powers of 1=N. Moreover, the
possible nonexistence or irrelevance of renormalons in
quantum chromodynamics (QCD) has been suggested in
several papers; see, e.g., [3,4] and references therein. This
has motivated dedicated high order perturbative expan-
sions of the plaquette, e.g., [5–8], in lattice regularization,
with conflicting conclusions. Powers as high as �20 were
achieved in the most recent simulation [9]. However, the
expected asymptotic behavior was not seen. If confirmed,
this nonobservation would cast doubt on the well accepted
lore of the OPE and renormalon physics (see [10] for a
comprehensive review), and would significantly affect the
phenomenological analysis of data from high energy phys-
ics experiments on the decay of heavy hadrons, heavy
quark masses, the running coupling parameter, parton dis-
tributions, etc. Therefore, this issue should be clarified
unambiguously.

In this Letter, we present compelling numerical evidence
that the expected renormalons indeed exist not only in
models but in real gluodynamics. We also argue why
previous analyses, based on the plaquette, have failed to
detect them. The vital and new ingredients of our study are
as follows: (a) We consider a perturbative series whose

leading renormalon is dictated by a dimension d ¼ 1
operator, rather than by the d ¼ 4 plaquette. (b) Using a
higher order integrator and employing twisted boundary
conditions, among other improvements, we are able to
obtain results of unprecedented precision on an extensive
set of spacetime volumes. (c) We carefully extrapolate to
the infinite volume limit, thoroughly investigating finite
size effects.
Perturbative expansions in powers of �,

K ¼ X
n

kn�
n; (1)

are believed to be asymptotic and not Borel summable in
QCD, due to the existence of singularities in the Borel
plane (renormalons). Typically, kn will diverge like andn!,
with a constant ad. This divergence pattern of kn should not
be arbitrary but consistent with the OPE associated to a
physical observable. Even though this factorial growth was
originally discovered analyzing the Feynman diagrams
that contribute to the large �0 approximation, the correct
divergent structure can only be inferred by assuming that
the perturbative series is asymptotic and complies with the
OPE. The OPE fixes the positions and the structure of the
renormalon singularities in the complex Borel plane, re-
sulting in a more intricate pattern that cannot be obtained
from the large �0 approximation alone. Successive contri-
butions kn�

n decrease for small orders n down to a mini-
mum at n0 � 1=ðjadj�Þ. Higher order contributions should
be neglected and introduce an ambiguity of the order of
this minimum term, kn0�

n0 � exp½�1=ðjadj�Þ�.
Within the OPE, an observable Rðq;�Þ can be factorized

into short distance Wilson coefficients Ciðq;�Þ and non-
perturbative matrix elements hOið�;�Þi of dimension i:

R ¼ C0ðq;�ÞhO0ð�;�Þi þ Cdðq;�ÞhOdð�;�Þið�=qÞd
þ � � � : (2)

q, �, and � denote a perturbative, low momentum, and
factorization scale, respectively, so that q � � � �. For
the plaquette, hO0i ¼ 1 and the next higher nonvanishing
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operator is the dimension d ¼ 4 gluon condensate. In this
case, the perturbative expansion of C0 cannot be more
accurate than Oð�4=q4Þ which is exactly of the size of
the kn0�

n0 term since

ð�=qÞd ’ exp½�1=ðjadj�Þ�; where ad ¼ �0

2�d
; (3)

with �0 ¼ 11. The so-called leading infrared renormalon
of this expansion cancels the ultraviolet ambiguity of the
next order nonperturbative matrix element so that the
physical observable R is well defined.

From this discussion, it is evident that we should study
series expansions with the smallest possible n0 or, equiv-
alently, d. For d ¼ 1, the perturbative expansion should
start to diverge at an order n0 that amounts to about one-
fourth of that for the plaquette. This applies to the pole
mass (see [11,12]) and to the associated self-energy of a
static source, which we consider here. The latter does not
have a continuum limit, as it linearly depends on the
ultraviolet regulator. Here, we consider lattice regulariza-
tion with the Wilson gauge action [13] and write the self-
energy in the following way:

�m ¼ 1

a

X
n�0

cn�
nþ1ð1=aÞ: (4)

a�1, the inverse lattice spacing, provides the ultraviolet
cutoff. The large n behavior of the coefficients cn is
regulator independent, universal, and equal to the asymp-

totic behavior of the pole mass up to Oðe�1=nÞ terms (due
to subleading renormalons):

cn ¼n!1
Nm

�
�0

2�

�
n�ðnþ1þbÞ

�ð1þbÞ
�
1þ b

ðnþbÞs1þ���
�
: (5)

The coefficients b and s1 were computed in [14]. They read
(see [15] for details)

b ¼ �1

2�2
0

; s1 ¼ 1

4�3
0b

�
�2

1

�0

� �2

�
: (6)

For a static source in the fundamental (triplet) representa-
tion, the normalization constant Nm is exactly the same as
for the leading renormalon of a heavy quark pole mass.
This renormalon is also related to a renormalon of the
singlet static potential since these contributions cancel
from the energy EðrÞ ¼ 2mþ VðrÞ [16–18]. For adjoint
sources, it corresponds to a specific combination of pole
mass and adjoint static potential renormalons [19]. The
factor Nm is canceled in the ratios

cn
cn�1

1

n
¼ �0

2�

�
1þ b

n
� ð1� bs1Þ bs1

n2
þO

�
1

n3

��
: (7)

We obtain the expansion coefficients cn of the static
energy from the temporal Polyakov line on hypercubic
lattices. We investigate volumes of NT lattice points in
the time direction and spatial extents of NS points.

Formally, we may introduce an anisotropy at � as. In this
case, the lattice action that is invariant under time or parity
reversal agrees with the continuum action up to Oða2t ; a2sÞ
terms. The temporal and spatial lattice extents in physical
units are given by atNT and asNS, respectively, so that the
only dimensionless combinations consistent with the lead-
ing order lattice artifacts are a2t =ðatNTÞ2 ¼ 1=N2

T and 1=N
2
S.

Therefore, within perturbation theory, where we cannot
dynamically generate additional scales, the leading order
lattice artifacts are indistinguishable from Oð1=N2

T; 1=N
2
SÞ

finite size effects.
We choose periodic boundary conditions in time and, to

eliminate zero modes and to improve the numerical stabil-
ity, twisted boundary conditions [20–23] in all spatial
directions. The Polyakov line is defined by

LðRÞðNS;NTÞ ¼ 1

N3
S

X
n

1

dR
tr

2
4 YNT�1

n4¼0

UR
4 ðnÞ

3
5; (8)

where UR
�ðnÞ � eigA

R
�½ðnþ1=2Þa� 2 SUð3Þ denotes a gauge

link in representation R, connecting the sites n and nþ�̂,

ni2f0; .. . ;NS�1g, n42f0; .. . ;NT�1g, and g¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
.

We implement triplet and octet representations R of dimen-
sions dR ¼ 3 and 8. The link U4ðnÞ appears within the
covariant derivative of the static action �cD4c , the discre-
tization of which is not unique. We use singly stout-smeared
[24] (smearing parameter � ¼ 1=6) covariant transporters
instead of U4ðnÞ as a second, alternative choice, to demon-
strate the universality of our findings.
We remark that neither the lattice spacing nor the strong

coupling parameter � enter our simulations explicitly.
Numerical stochastic perturbation theory [25–27] enables
us to directly calculate coefficients of perturbative expan-
sions. We employ the variant of the Langevin algorithm
introduced in [28] that only quadratically depends on a
time step ��. Extrapolations to �� ¼ 0 were performed
on a subset of lattice volumes where we found agreement
within statistical errors between all our extrapolated expan-
sion coefficients and those obtained at �� ¼ 0:05. For the
geometries listed in Table I, we restrict ourselves to this
fixed value, which, within errors, effectively corresponds to
�� ¼ 0.
We expand the logarithm of the smeared and unsmeared

Polyakov lines in different representations to obtain the
corresponding static energies:

TABLE I. Lattice geometries. Volumes with boldface time
extents are expanded up to Oð�20Þ, the others up to Oð�12Þ.
NS NT NS NT

7 7, 8 11 16
8 8, 10, 12, 16 12 12
9 12 14 14
10 8, 10, 12, 16, 20 16 12, 16, 20
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PðNS;NTÞ ¼ � lnhLðNS;NTÞi
aNT

���!NS;NT!1
�m: (9)

Fortunately, the dependence of this logarithm on NT and NS can be deduced and only a few parameters need to be fitted at
each order:

aP ¼ X
n�0

�
cn�

nþ1ða�1Þ � fn
NS

�nþ1½ðaNSÞ�1� þO
�
1

N2
T

;
1

N2
S

��
� X

n�0

½cn þ �ð1Þ
n ðNSÞ þ�ð2Þ

n ðNS;NTÞ��nþ1ða�1Þ;

�ð1Þ
n ¼ � 1

NS

½fn þ logsðcÞn ðNSÞ�;�ð2Þ
n ¼ 1

N2
T

�
vn � 1

NS

½fðvÞn þ logsðvÞn ðNSÞ�
�
þ 1

N2
S

�
wn � 1

NS

½fðwÞn þ logsðwÞn ðNSÞ�
�
: (10)

The logsðcÞn ðNSÞ are polynomials of lnðNSÞ of order n� 1,
with coefficient functions that depend on fj and the
�-function coefficients �j where j � n� 1. These terms
are entirely determined by the renormalization group run-
ning of �. The logsðv=wÞn ðNSÞ are obtained in the same way.
In the NT ! 1 limit, �ð1Þ

n is the dominant correction while
�ð2Þ

n includes the leading Oð1=N2
T; 1=N

2
SÞ lattice artifacts

discussed above.

The term �ð1Þ
n originates from interactions with mirror

images; see also [29]. This effectively produces a static
potential between charges separated at distances aNS, but
without self-energies. Therefore, we expect the high order
behavior of fn and cn to be dominated by one and the same
renormalon. This can also be illustrated considering the
leading dressed gluon propagator DðkÞ / 1=k2, where
k4 ¼ 0. With the (formal) ultraviolet cutoff 1=a and an
infrared cutoff 1=ðaNSÞ, this can be written as (ignoring
lattice corrections)

P /
Z 1=a

1=ðaNSÞ
dkk2DðkÞ � 1

a

X
n

cn�
nþ1ða�1Þ

� 1

aNS

X
n

cn�
nþ1½ðaNSÞ�1�; (11)

after perturbatively expanding DðkÞ. When reexpressing
�½ðaNSÞ�1� in terms of �ða�1Þ, we may consider two
situations: (a) NS > en. In this limit, the last term of
Eq. (11) is exponentially suppressed in n and the renorma-
lon can directly be obtained from a large order expansion
of aP. (b) NS < en. The last term of Eq. (11) is important
and the renormalon cancels order-by-order in n.

In present day numerical simulations NS < en, and the

term �ð1Þ
n needs to be taken into account, in combination

with cn. A similar phenomenon was numerically observed
for the static singlet energy EðrÞ ¼ 2mþ VðrÞ [19,30].
This teaches us that to correctly identify the renormalon
structure of �m, it is compulsory to incorporate the 1=NS

corrections. So far, in studies of high order perturbative
expansions of the plaquette the corresponding finite size
terms have been neglected. Our fits indeed yield fn ’ cn
for large n, in clear support of the renormalon dominance
picture.

In the lattice scheme�0,�1, and�2 are known [31]. The
effects of higher �j start at Oð�5Þ, but this uncertainty in

our parametrization quickly becomes negligible at high
orders where the coefficients fj, governed by the d ¼ 1

renormalon, will dominate. This can be quantified system-
atically in a large n analysis [32], where any possible
renormalon of the lattice � function is subleading
(d > 1). To check this assumption and to justify the
truncation at �2, we have performed fits including �j for

j � 0, 1, and 2 (see below).
Starting at Oð�4Þ, one may expect additional finite size

terms / lnðNT=NSÞ=NS from a possible mixing of the
antitriplet interaction between mirror charges with sextet
and higher representations, mediated by ultrasoft gluons, in
analogy to the mixing of singlet and octet static potentials
in potential nonrelativistic QCD (pNRQCD) [33]. These
terms are subleading from the renormalon point of view
(d ¼ 3). Moreover, aNS provides an infrared cutoff to gluon
momenta so that one would only expect such contributions
in the limitNS � NT that we do not investigate and, indeed,
we see no numerical evidence of them.
Our data are sensitive to the 1=N2

T correction terms

within �ð2Þ
n . However, including wn or fðwÞn as additional

fit parameters did not significantly improve the �2 value
and so we decided to omit the 1=N2

S and 1=N3
S terms. Note

that these contributions, if present, can numerically easily
be distinguished from 1=NS and become irrelevant at rela-
tively small NS, unlike logsðNSÞ=NS terms.

 6
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 8  10  12  14  16  18  20

c 9
 /1

08

NT

NS=16
NS=14
NS=12
NS=11
NS=10
NS=  9
NS=  8
NS=  7

FIG. 1 (color online). Comparison between the global fit and
data for n ¼ 9.
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As a cross-check, we calculate diagrammatically,

c0 ¼ 2:117 274 357 083 480 798 597 0 . . . ; (12)

c1 ¼ 11:1425ð25Þ; f0 ¼ 0:769 625 632 84ð2Þ; (13)

fðwÞ0 ¼ 0:149 32ð3Þ; w0 ¼ v0 ¼ fðvÞ0 ¼ 0; (14)

for the unsmeared Polyakov line. In this case, fðwÞ0 , the

1=N3
S coefficient does not vanish but it is small. For fun-

damental sources, c0 and c1 were known diagrammatically
before and c2 numerically [29,34]. Our fit reproduces these
values. For adjoint sources, the above coefficients need to
be multiplied by the factor CA=CF ¼ 9=4.

We exemplify the result of our global fit to the
unsmeared triplet data obtained on all our geometries
(see Table I) and orders of perturbation theory (with four
parameters per order) in Fig. 1, where a comparison to the
n ¼ 9 data is shown. We find smeared and unsmeared data
to be well described by the fits, with reasonable �2=NDF �
1:29 and 1.46, respectively. Note that the factorial growth
found (and expected) for the coefficients fn produces very
sizable 1=NS terms at high orders.

In Fig. 2, we compare the infinite volume extrapolated
ratios cn=ðncn�1Þ to the theoretical prediction, Eq. (7).
LO, NLO, and NNLO refer to this prediction, truncated
at Oð1Þ, Oð1=nÞ, and Oð1=n2Þ, respectively. The data are

robust to subtracting lattice artifacts [the �ð2Þ terms of
Eq. (10)] or to truncating at different orders in �j; see

Fig. 3. Particularly reassuring is the universality of the
result; fits to smeared and unsmeared Polyakov loop
expansions give the same large n behavior, fully con-
sistent with the dominance and universality of the infra-
red renormalon; smearing only affects the ultraviolet
behavior. Fits to the octet representation data also
show exactly the same behavior, again in agreement

with the renormalon dominance picture. Also note that
numerical stochastic perturbation theory data for differ-
ent orders are statistically correlated. These correlations
work in our favor. We postpone the details of this
to [32].
Finally, we determine the normalization of the pole mass

renormalon [see Eq. (5)] and obtain Nlat
m ¼ 18:6ð4Þ for the

smeared and Nlat
m ¼ 19:0ð3Þ for the unsmeared static ac-

tion. Converting this to the modified minimal subtraction

(MS) scheme, we find NMS
m ¼ �latN

lat
m =�MS ¼ 0:65ð2Þ.

This agrees remarkably well with the estimate NMS
m ’

0:62 of [30,35] from a MS scheme expansion up to
Oð�3Þ, in support of the claim that renormalon dominance

starts at much lower orders in the MS scheme (see, for
instance, [15,19,30]). Preliminary results from directly

converting our lattice data to the MS scheme further re-
inforce this claim. Irrespective of the scheme, the heavy
quark pole mass can only be defined up to an ambiguity of
�0:65�MS. A more detailed analysis is in preparation [32].

In conclusion, we have obtained the static self-energy of
SU(3) gauge theory in four spacetime dimensions toOð�20Þ
in the lattice scheme. For orders n * 9, we find perfect
agreement with the factorial growth of the coefficients, as
predicted by the conjectured renormalon picture based on
the operator product expansion. Note that this implies that,
in the lattice scheme, we expect the renormalon dominance
of the plaquette to set in at values n * 4	 9 that so far have
not been realized in the literature.
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FIG. 2 (color online). The ratio cn=ðncn�1Þ for the smeared
and unsmeared fundamental static self-energies, compared to the
prediction Eq. (7) at different orders of the 1=n expansion.
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