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Efficient momentum relaxation through umklapp scattering, leading to a power law in temperature dc

resistivity, requires a significant low energy spectral weight at finite momentum. One way to achieve this

is via a Fermi surface structure, leading to the well-known relaxation rate �� T2. We observe that local

criticality, in which energies scale but momenta do not, provides a distinct route to efficient umklapp

scattering. We show that umklapp scattering by an ionic lattice in a locally critical theory leads to

�� T2�kL . Here�kL � 0 is the dimension of the (irrelevant or marginal) charge density operator Jtð!; kLÞ
in the locally critical theory, at the lattice momentum kL. We illustrate this result with an explicit

computation in locally critical theories described holographically via Einstein-Maxwell theory in Anti–de

Sitter spacetime. We furthermore show that scattering by random impurities in these locally critical

theories gives a universal �� ðlog1TÞ�1.
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Context: the many faces of the dc resistivity.—The dc
resistivity of a system with a net charge density is ulti-
mately tied to the rate at which the charge-carrying ex-
citations can lose their momentum. If the total momentum
is conserved, the conductivity diverges at the lowest fre-
quencies ! ! 0 as

�ð!Þ ¼ �2
~J ~P

� ~P ~P

�
i

!
þ �ð!Þ

�
: (1)

For instance, in a relativistic theory, Ward identities imply
the susceptibilities �~J ~P ¼ � and � ~P ~P ¼ "þ P [1–3].

Here �, �, P are the charge, energy densities, and pressure,
respectively. At low temperatures �þ P ¼ ��.

It is, of course, intuitively plausible that a net charge will
accelerate indefinitely under an applied electric field.
Formulas such as Eq. (1) indicate that the dc conductivity
is a subtle observable. Despite being a low energy quantity,
it is sensitive to UV data such as the charge density and
translation invariance. Computations of finite dc conduc-
tivities at nonzero density necessarily include the effects of
momentum nonconserving terms. The classic example is
Fermi liquid theory in the presence of irrelevant couplings
to a lattice, which leads to a universal resistivity r� T2, as
wewill briefly review. Similarly, the remarkable robustness
of the observed linear in (low) temperature resistivity
across a range of chemically distinct unconventional ma-
terials (for an overview see [4]) may suggest that the key
physics there is also universal, in other words, describable
within the framework of effective field theory. In this
Letter, we will present a new way, distinct from Fermi
surface kinematics, in which the UV sensitivity of the dc
resistivity can be subsumed into a critical effective field
theory.

Any loss of momentum is a question of time scales. To
invalidate the conclusion from Eq. (1), and hence, achieve

a finite dc resistivity, momentum must be effectively lost
on the experimental time scale. Two natural ways to
achieve this are firstly, if the charge carriers of interest
are parametrically diluted by a bath of other degrees of
freedom, and secondly, if the charge carriers interact with
parametrically heavier degrees of freedom. In both cases,
the charge carriers can dump their momentum into the
other degrees of freedom and the momentum will not be
returned to the charge carriers within the experimental time
scale. Any reliable computation of a dc conductivity must
hinge on an approximation analogous to the two just
described.
There has been some recent success realizing the former

of these scenarios via the holographic correspondence.
Firstly, in probe brane setups, where the charge carriers
are parametrically diluted by critical neutral degrees of
freedom [5]. An important class of these models, where
the probe brane is described by the Dirac–Born–Infeld
action, have been shown to have a low temperature resis-

tivity scaling as r� T2=z, in 2þ 1 dimensions, with z the
dynamical critical exponent governing the critical neutral
modes [6]. A second set of holographic models that realize
similar physics are the locally critical non-Femi liquids of
Ref. [7]. Here, a parametrically small fraction of the
charged degrees of freedom are fermions with non-Fermi
liquid dispersion relations due to interactions with a bath of
fractionalized charged degrees of freedom [8,9]. The con-
tribution of the non-Fermi liquid excitations to the resis-

tivity goes like r� T2�kF , where �kF is related to the UV

sensitive, scaling dimension of the fermionic operator in
the low energy locally critical theory of the fractionalized
degrees of freedom [10].
The second scenario, involving interaction with para-

metrically heavy degrees of freedom, has the advantage
that such degrees of freedom always exist in actual
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materials: as quenched random impurities and/or as a
lattice of ions. It also does not depend on a large N limit
in an essential way. Many of the most interesting materials
appear to be very pure, and partially for that reason, wewill
focus on scattering off an ionic lattice in this Letter. A
periodic lattice degrades momentum via umklapp scatter-
ing processes. In the final section we will also present a
result for random impurity scattering.

Momentum relaxation rate due to umklapp scattering.—
Consider a translationally invariant field theory at finite
density such that the only conserved vector quantity is the
total momentum. We recalled above that this results in an
infinite dc conductivity. Now, perturb this theory by an
irrelevant operator—so the IR is still described by the
original fixed point—that breaks translational invariance:

H ¼ H0 � gOðkLÞ; (2)

where kL represents the typical lattice momentum scale.
For operators A and B, define

~CABð!Þ ¼ T

i!
½GR

ABð!Þ �GR
ABði0Þ�; (3)

where GR is the retarded Green’s function. The dc con-
ductivity is given by the Kubo formula as

� ¼ lim
!!0

ImGR
~J ~J
ð!Þ

!
¼ 1

T
lim
!!0

~C~J ~Jð!Þ: (4)

We would like to have a perturbative expression that
captures the leading contribution coming from the leading
irrelevant correction introduced in Eq. (2). The appropriate
way to do this is given by the memory matrix formalism
[11]. A crucial part of this formalism is the inclusion of all

conserved operators that overlap with ~J in matrix conduc-

tivities. In our case, this is only the momentum ~P.
Intuitively, the conductivity diverges because the current
operator has some overlap with the momentum operator,
which is conserved. Once this is considered, we can write

�̂ð!Þ ¼ �̂ðM̂ð!Þ � i!�̂Þ�1�̂; (5)

where hatted quantities are two-dimensional matrices with

indices either ~J or ~P; �̂ is the static susceptibility matrix

and M̂, the memory matrix [11]. When M̂ vanishes at
! ¼ 0 we obtain Eq. (1). It can be shown that, to leading
order in g, the M ~P ~P component determines the dc con-

ductivity. In this approximation

M ~P ~P ¼ 1

T
lim
!!0

~C _~P
_~P
ð!Þ ¼ g2k2L

T
lim
!!0

~COðkLÞOðkLÞjg¼0

¼ g2k2L lim
!!0

ImGR
OOð!; kLÞ
!

��������g¼0
: (6)

Here we have used that
_~P ¼ i½H; ~P� ¼ g ~kLOðkLÞ. Thus

the dc conductivity is

�~J ~J ¼ lim
!!0

�2
~J ~P

M ~P ~Pð!Þ �
�2

~J ~P

� ~P ~P

1

�
; (7)

where � ¼ lim!!0
M ~P ~Pð!Þ
� ~P ~P

is the momentum relaxation rate,

as we can see from the ~P ~P component of �̂.
For umklapp scattering by an ionic lattice, O ¼ Jt and

the lattice appears as a spatially dependent chemical po-
tential. The momentum relaxation rate is then

� ¼ g2k2L
� ~P ~P

lim
!!0

ImGR
JtJtð!; kLÞ
!

��������g¼0
: (8)

Critical umklapp with and without Fermi surfaces.—The
previous section implies that the momentum relaxation rate
due to perturbative umklapp scattering by an ionic lattice is
given through the spectral function, ImGR

JtJtð!; kLÞ, with
! ! 0. In order for this quantity to be captured by a
critical effective field theory, with, for example, a resistiv-
ity that is a power law in the temperature, it is necessary
that low energy excitations exist at k ¼ kL. If no excita-
tions are supported at the lattice momentum, for instance if
!� kz, then the resistivity will be due to exponentially
suppressed Boltzmann states.
Systems with a Fermi surface admit critical umklapp

scattering in two senses, as we now review. The first is if
the umklapp momentum connects two points on the Fermi
surface. Then all charge carriers involved in the umklapp
scattering are critical, despite the momentum transfer. This
process is mediated by the density operator at finite mo-
mentum. In 2þ 1 dimensions

Jtð!; kÞ � JtðpÞ ¼
Z

d3qc y
�ðqÞc �ðpþ qÞ: (9)

In Fermi liquid theory, this operator is relevant with di-
mension� ¼ �1. It induces a renormalization group (RG)
flow that folds the Fermi surface and gaps out the two
points connected by the lattice vector. This conclusion can
be averted either by tuning the gap to zero or by non-Fermi
liquid physics rendering the operator Eq. (9) irrelevant. An
interesting example of the first possibility is given by the
hot spots on a Fermi surface coupled to a critical spin
density wave. Fermions at the hot spots contribute a strong
power law conductivity, but can easily be short-circuited
by the remainder of the cold fermions [12,13]. A renor-
malization group treatment [14] suggests, however, that
critical umklapp scattering at the hot spots can be commu-
nicated to the rest of the Fermi surface [15]. In 1þ 1
dimensions, such hot spots constitute the entire Fermi
surface and one might expect that, for example, a half
filled Luttinger liquid could exhibit a critical resistivity in
cases where the umklapp coupling is irrelevant [16].
This expectation is thwarted by additional conservation
laws [17–19].
The second way in which Fermi surface kinematics

enable critical umklapp scattering is through coupling the
lattice to the irrelevant quartic operator
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OðpÞ ¼
Z �Y4

i¼1

d3pi

�
c y

�ðp1Þc y
�0 ðp2Þc �ðp3Þ

� c �0 ðp4Þ � �ð3Þðp1 þ p2 � p3 � p4 � pÞ: (10)

The RG flow is towards the Fermi surface. In particular, the
delta function does not scale generically [20,21]. The
entire Fermi surface will have a critical resistivity. This is
a well known fact, and the corresponding momentum
relaxation is easy to compute in the framework of the
previous section. The operator Eq. (10) has scaling dimen-
sion � ¼ 1. The imaginary part of the Green’s function
must be odd under ! ! �! and therefore, we can antici-
pate the momentum relaxation rate from Eqs. (6) and (7)
will have the (low) temperature dependence

�� lim
!!0

ImGR
OOð!; kLÞ
!

� T2: (11)

This is the well-known Fermi liquid theory result. The
above considerations can straightforwardly be generalized
to cases where the excitations of the Fermi surface do not
have Fermi liquid dispersion relations.

For a convex Fermi surface in 2þ 1 dimensions, the

current ~J remains a conserved quantity in Fermi liquid
theory, to leading order at low frequencies. Here, our

assumption that the current ~J was degraded prior to the
consideration of umklapp effects does not hold.

Consideration of ~J and ~P simultaneously via the entire
memory matrix [22,23] recovers a resistivity r� T2.

Without a Fermi surfacelike structure (including, for
example, Fermi points), one is left with scalings towards
the origin !� kz. An exceptional case, however, is the
limit z ! 1. In this limit, time scales but space does not. In
such a locally critical theory, all momenta become inde-
pendently critical at low energies. It is immediately clear
that umklapp scattering off an ionic lattice will lead to
critical resistivities in such a theory. The charge density
operator Jtð!; kÞ will have a scaling dimension �k under
the critical scaling. The UV quantity kL will then deter-
mine the IR scaling dimension �kL of the modes that

control the loss of momentum. With this difference, that
kL appears in the operator dimension, the logic then pro-
ceeds very similarly to the Fermi liquid case. In particular,
the momentum conservation delta function again does not
scale, leading to GR

JtJtð!; kÞ having dimension 2�k þ 1.

Therefore, the temperature dependence of the momentum
relaxation rate Eq. (8) is

�� lim
!!0

ImGR
JtJtð!; kLÞ
!

� T2�kL : (12)

If we require the operator Jtð!; kÞ to be marginal or
irrelevant in the IR theory—and if this is not the case
then we have not reached the true IR and our perturbation
theory is suspect—then�kL � 0. As for the Fermi liquid, a

marginal operator leads to a constant, T0, momentum
relaxation rate.
Locally critical theories also dovetail in an interesting

way with Fermi surfaces, as one can efficiently scatter
fermionic excitations with locally critical bosons. This
fact is behind the non-Fermi liquid spectral functions and
resistivities of Refs. [7,9,10]. In this Letter, we are exploit-
ing a different consequence of local criticality: the effi-
ciency of umklapp scattering in such a theory, independent
of the presence of Fermi surfaces.
Holographic model for locally critical umklapp scatter-

ing.—In holography, the IR field theoretical physics is
described by the far interior of the dual spacetime. In the
absence of explicit charged matter in the bulk [24], it is a
robust feature [25] that at zero temperature and at finite
charge density, a fully regular solution to the bulk equa-
tions of motion will have an AdS2 � R2 IR geometry. It
was emphasized by [7] that the isometries of this IR space-
time—time is part of the AdS2 factor and scales while
space does not—entailed an emergent local criticality. In
fact, the scaling in time is part of a larger emergent
SLð2;RÞ symmetry of AdS2 that strongly constrains low
energy Green’s functions, as we will see shortly. Here, as in
the remainder, we have specialized to 2þ 1 dimensional
field theories.
The simplest model that illustrates the physics of interest

is Einstein-Maxwell theory in asymptotically Anti–de
Sitter spacetime

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2

�
Rþ 6

L2

�
� 1

4e2
F��F

��

�
: (13)

We wish to compute retarded Green’s functions at low
temperature and frequencies !, T � �. The momentum,
however, need not be small. It is well established that holo-
graphically the dissipative low frequency physics is cap-
tured by the near-horizon geometry, while low temperatures
means that the horizonwill be near-extremal (seeRef. [26]).
Therefore, we can focus on the following solution to the
theory, which describes a black hole in AdS2 � R2:

ds2 ¼ L2

6

�
� fðrÞdt2

r2
þ dr2

fðrÞr2 þ dx2 þ dy2
�
: (14)

The Maxwell potential is A ¼ 1ffiffi
6

p eL
� ðr�1 � r�1þ Þdt and the

emblackening factor fðrÞ ¼ 1� r2

r2þ
.

To compute the retarded Green’s function of Jt in this
background we must perturb the time component of the
Maxwell potential: �At. Due to the finite energy and
momentum, this perturbation couples to other modes.
Taking the momentum to be in the x direction, these are:
f�gxx; �gyy; �gtt; �gxt; �At; �Axg. All the perturbations

have the form of a function of r times e�i!tþikx. A clever
choice of gauge invariant variables is [27,28]:
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� ¼ �A0
t �

ffiffiffi
3

2

s
�gtt
f

; � ¼ �gyy; (15)

and then define

�� ¼ �þ r2ffiffiffi
6

p
k2

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
Þ�: (16)

These variables are now found to satisfy

�00� þ f0

f
�0� þ

�
!2

f2
� 1þ k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p

r2f

�
�� ¼ 0:

(17)

These equations can be solved in terms of hypergeometric
functions. One imposes, as usual [29,30], infalling bound-
ary conditions at the horizon. The locally quantum critical
Green’s functions are obtained by expanding the solution
near the boundary r� 0 of the AdS2 � R2 region

�� / r1=2ðr��� þG�ð!Þr��Þ: (18)

Here we introduced the exponents [28]

�� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 4k2 � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

pq
: (19)

We have normalized the spatial coordinates x, y differently
in Eq. (14) relative to Ref. [28].

The locally quantum critical Green’s functions are found
to be

G �ð!Þ ¼ �ð	TÞ2�� ð1� ��Þð12 � i!
2	T þ ��Þ

ð1þ ��Þð12 � i!
2	T � ��Þ

: (20)

We have given this result in terms of the temperature of the
black hole T ¼ 1

2	rþ
. The expression Eq. (20) is in fact

determined, up to overall normalization, by the scaling
dimensions �� þ 1

2 of the operators and the SLð2;RÞ sym-

metry of the black hole in AdS2 [26,31,32]. For the mo-
mentum relaxation rate due to umklapp scattering, we will
be interested in the! ! 0 expansion of the imaginary part
of the Green’s function. This gives

ImG�ð!Þ / !ð	TÞ2���1 þ 	 	 	 : (21)

A well established matching procedure, see for example
Refs. [7,28], shows that this is equal to the imaginary part
of the full low frequency Green’s function ImG�ð!Þ /
ImG�ð!Þ.

From this result, we can obtain the desired density-
density Green’s function. The density-density Green’s
function is found to be a linear combination of the G�
Green’s functions [28]. The G� Green’s function is more
IR singular than the Gþ Green’s function, and so gives the
dominant contribution. From Eqs. (8) and (21), the um-
klapp momentum relaxation rate in this theory is

�� lim
!!0

ImGR
JtJtð!; kLÞ
!

� T2���1: (22)

This result is consistent with the general expression
Eq. (12) and the fact that the dimension of the frequency
space operator is �k ¼ �� � 1

2 .

Discussion.—We have found that local quantum criti-
cality provides a new route, different to Fermi surface
kinematics, to obtain critical umklapp scattering. Local
criticality emerges naturally in holographic contexts,
where it can be stable over a made parametrically wide
intermediate energy range in a large N limit [9,33–36].
In this Letter, we have not touched upon the computation

of optical conductivities. The optical and dc conductivities
are deeply interconnected but behave in opposite ways. As
we have seen, many low energy degrees of freedom can
lead to a large resistivity, and hence, small dc conductivity.
On the other hand, the optical conductivity is essentially
the spectral density for charged degrees of freedom and is,
therefore, large when the dc conductivity is small. Critical
optical conductivities due to umklapp scattering were re-
cently found in an RG treatment of the quantum critical
spin density wave transition in two dimensions [15].
Finally, we recall that scattering off random impurities is

also naturally treated using the memory function method.
A formula for the scattering rate in that case was obtained
in Refs. [1,37]. The formula is, essentially, just an integral
of our expression Eq. (12) over momenta, which we might
think of as averaging over lattice separations. For the case
of charged impurities

�imp � lim
!!0

Z d2k

ð2	Þ2 k
2
ImGR

JtJtð!; kÞ
!

�
Z

dkk3T2�k : (23)

In the low temperature limit, this integral is dominated by
the small momentum contribution. Using the concrete
expression of Eq. (19), the momentum is found to have a
natural scale k4? � ðlog1TÞ�1, which is small. A scaling

argument then gives the momentum relaxation rate

�imp � 1

log1T
: (24)

Unlike the umklapp scattering we have focused on, this
relaxation rate is completely universal in the sense that it
does not depend on the UV completion of the locally
critical IR theory. The power of the logarithm that ap-
peared is sensitive to the fact that in the holographic model
�k � k4 at small k. A different power in the small momen-
tum expansion would have led to a different power of the
logarithm.
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