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We investigate how the shape of a heat source may enhance global heat transfer at short time. An

experiment is described that allows us to obtain a direct visualization of heat propagation from a prefractal

radiator. We show, both experimentally and numerically, that irregularly shaped passive coolers rapidly

dissipate at short times, but their efficiency decreases with time. The de Gennes scaling argument is shown

to be only a large scale approximation, which is not sufficient to describe adequately the temperature

distribution close to the irregular frontier. This work shows that radiators with irregular surfaces permit

increased cooling of pulsed heat sources.
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Propagation of heat as well as particle diffusion are of
direct interest in everyday life, chemical industry, life
sciences, and pollution spreading. In electronics or civil
engineering, one needs to improve the cooling of micro-
processors and build efficient radiators for housing.
Empirically, a large surface is known to dissipate more
so that irregularly shaped metallic radiators are placed onto
microprocessors in order to remove heat. But this is the
result of both conduction and convection. In this Letter, we
present an experimental, theoretical, and numerical study
of purely diffusive heat transfer that aims at revealing the
role of the shape of the radiator.

This question has been intensively investigated in
a steady state regime in which the diffusive transfer
toward a boundary is governed by the Laplace equation.
In this case, a general mathematical result known as the
Makarov’s theorem states that, in 2D, the information
dimension of the harmonic measure (which describes the
distribution of particles arrived onto the boundary) is
strictly equal to 1 for any simply connected set, whatever
the complexity of its boundary [1]. In physical terms, this
means that, contrary to intuition, regular and irregular
boundaries work similarly in the steady state regime [2–4].

In this Letter, we report the first experimental observa-
tion that regular and irregular boundaries behave differ-
ently in the transitory (or time-dependent) regime. We
show that the role of irregular boundaries is important
and provide quantitative explanations based on theory
and numerical simulations. Note that transitory diffusion
from an irregular surface has been already studied in the
context of impedance spectroscopy in electrochemistry
[5,6], NMR relaxation in porous media [7,8], Brownian
motion near fractal surfaces [9], and heat transfer [10].
Rigorous short-time asymptotics have been reported for
diffusive transfer at fractal boundaries [11–17].

We present a direct experimental visualization of heat
propagation from a ‘‘fractal’’ radiator in 2D. Fractals are
complex shapes that contain a large variety of geometrical
feature sizes [18], and it has been already shown that
deterministic and random shapes exhibiting the same frac-
tal dimensions, behave similarly [19].
We check, for the first time, the validity of the de Gennes

scaling argument [20], which is often used to understand
heat propagation and diffusion from an irregular surface
[5,7,21]. Relying on experimental results and numerical
solutions of the underlying Fourier equation, we conclude
that this argument can only be a large scale approximation
which is not sufficient to describe temperature distribution
close to the irregular frontier.
The heat propagation in 2D has been studied experi-

mentally using liquid crystal temperature imaging [22,23].
The heat source is constituted by a highly conductive,
4 mm thick, aluminum sheet [Fig. 1(a)]. A complex per-
foration has been laser machined through this plate to
obtain the third generation of the quadratic von Koch
snowflake of fractal dimension 3=2. The aluminum heat
source is heated around Ts � 40� C. It is then put on the
liquid crystal plate (at temperature T0 � 20� C), which
was set on a Styrofoam block with very small heat con-
ductivity. This constitutes, to a good approximation, a 2D
heat propagation system. A video camera monitors the
time evolution of the temperature distribution by follow-
ing the displacement of the visible isotherm lines imaged
by their color [Fig. 1(b)–1(f)]. The entire film can be seen
in the Supplemental Material [27]. At each time t, one can
extract by a thresholding procedure an isotherm curve rt
of a given color (at temperature T). Since a quantitative
measure of the heat QðtÞ transferred from the source from
time 0 to t is not directly accessible, one has to resort to an
approximation. The first guess is thatQðtÞ is approximated
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by the surface area STðtÞ between the prefractal source and
the isotherm curve rt:

QðtÞ ’ c�ðTs � T0ÞSTðtÞ; (1)

where Ts � T0 is the temperature drop between the heat
source and the domain, c the film specific heat and � its
thickness. The estimation of STðtÞ from the experimental
images is shown in Fig. 2(a) on which one observes
successive power laws. In order to explain this behavior
and to check the validity of the approximation (1), we
recall the theoretical background, the currently admitted
scaling argument, and present direct numerical simula-
tions of heat propagation.

In the experiment, due to the very large contrast
between the thermal diffusivities of aluminum and the
liquid crystal film, the temperature over the aluminum
sheet and at its frontier � can be considered as constant
(Ts), imposing a Dirichlet boundary condition on the heat
source. The temperature distribution Tðr; tÞ over the do-
main (denoted as �) is thus the solution of the following
problem [24,25]:

@

@t
Tðr; tÞ � K�Tðr; tÞ ¼ 0 ðr 2 �Þ;

Tðr; tÞ ¼ Tsðr 2 �Þ; Tðr; t ¼ 0Þ ¼ T0;

(2)

where � is the 2D Laplace operator and K the liquid
crystal thermal diffusivity (of order 0:1 cm2 s�1). The
amount of heat QðtÞ transferred into � is simply:

QðtÞ ¼ c�
Z
�
drðTðr; tÞ � T0Þ: (3)

The fact that Eqs. (2) also describe particle diffusion
suggests a random walk interpretation of the conduction
experiment. In this representation, a source (here the
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FIG. 2 (color). Time evolution of the heat QðtÞ transferred
from the source. (a) Evolution of the area STðtÞ of the layer
delimited by the visualized isotherm: experiment (circles) and
numerical simulations (solid line) of the layer corresponding to
the isotherm level � ¼ 0:9 (a.u.), best fit for the experimental
curve, see text. Short-time asymptotic (4) and intermediate
asymptotic (5) slopes are shown by dashed lines and dash-dotted
lines. (b) Numerical computation of QðtÞ (solid blue line) and of
the three areas S0:1ðtÞ, S0:5ðtÞ, S0:9ðtÞ (symbols), all computed.
The curves STðtÞ are shifted along the horizontal axis by factors
5, 1 (no shift), and 0.11, respectively. As explained in the text,
these shifts account for the coefficient �ðTÞ whose dependence
on the chosen isotherm level is unknown for the prefractal
boundary. The thermal response Q0ðtÞ=Q0ð1Þ of the square
initiator of the same area is shown by solid black line (see
Supplementary Material [27] for details). Note that QðtÞ and
STðtÞ are divided by their maximum values to be comparable.

FIG. 1 (color). Experimental visualization of heat propagation
in 2D. (a) Schematic representation of the experimental setup. A
4 mm thick aluminum plate profiled following a fractal pattern is
put above a liquid crystal film itself put above a thermally
insulating Styrofoam layer. The large heat capacity and large
thermal conductivity of the heat source assure the uniformity of
the source temperature; (b)–(f) Motion of the isocolor or iso-
thermal line as a function of time (at 5, 10, 20, 40, and 46
seconds, respectively). The different lengths of the white arrows
in (e) illustrate the confinement effect discussed in the text. The
white bar presents a length scale of 1 cm.
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constant temperature Ts at radiator) is maintained at a
given concentration. Its boundary emits diffusive random
walkers that invade progressively the initially empty
medium �. These walkers form a diffusion layer whose
area can be tentatively used as a proxy for the transferred
heat according to Eq. (1).

De Gennes suggested to replace this area by that of the
so-called ‘‘Minkowski sausage’’ [26] of average width

lDðtÞ taken of order
ffiffiffiffiffiffi
Kt

p
[20]. The transferred heat is

then related, through Eq. (1), to the area MðtÞ of the
Minkowski sausage, STðtÞ ’ MðtÞ, so that the heat diffu-
sion problem is replaced by a purely geometrical compu-
tation of the area MðtÞ.

In this frame, a qualitative picture of heat propagation
can be drawn from the comparison between the width lDðtÞ
and the relevant geometrical length scales: the size l of the
smallest geometrical detail of the interface (the smaller
cutoff) and the size of the larger cutoff L of the boundary.
For a prefractal boundary as that of the experiment, three
different regimes can be expected. (i) At very short times,
the diffusion width is much smaller than the smallest cutoff
l and the whole interface transfers heat (or particles) almost
uniformly. The area of the Minkowski sausage is then
close to

MðtÞ ’ Lp

ffiffiffiffiffiffi
Kt

p
; (4)

where Lp is the total perimeter of the boundary which

scales as Lp / lðL=lÞdf for a surface of Minkowski dimen-

sion df. (ii) When the diffusion width lD becomes compa-

rable to l, the scaling of the Minkowski sausage behaves
differently. For self-similar boundaries, the Minkowski

sausage area scales with its width lD as l
d�df
D , from

which [20]:

MðtÞ / LdðKt=L2Þðd�dfÞ=2: (5)

In our case with df ¼ 3=2 and d ¼ 2, the transferred heat

is expected to follow a t0:25 power law. This intermediate
regime lasts up to the time when the diffusion length
reaches the larger cutoff L of the interface. (iii) From
this time, the heat transfer saturates since the domain is
bounded.

Those scaling arguments should provide an explanation
for the experimental power laws shown on Fig. 2. And
indeed there is a regime where the surface STðtÞ follows a
power law with an exponent close to 0.25, but it is followed
by a regime with an exponent larger than 0.5. We show now
that the de Gennes argument is not sufficient to interpret
the experiment because it neglects the role of confinement
which might play an important role depending on the
isotherm under consideration. Keeping in mind the exact
correspondence with random walkers, one has to take care
that the concentration of particles reaching a given point is
formed by particles emitted by the several faces surround-
ing this point. This behavior is indicated by the white

arrows in Fig. 1(e), in which the isotherm emerging from
a salient wedge is clearly much closer to the surface than
the same isotherm in a confined region. In other words, the
assumption of an approximately uniform diffusion layer,
which could be characterized by an average width lD, is not
valid for our experiment. As a consequence, the two areas,
MðtÞ (fixed by the geometrical width lD of the Minkowski
sausage) and STðtÞ (set by the isotherm of a given tempera-
ture T), are not equivalent.
An exact example illustrating this fact is given in the

Supplementary Material [27], where we derive the short-
time asymptotic behavior of the transferred heat and the
area STðtÞ for a spherical domain. In two dimensions, we get

QðtÞ ’ c�ðTs � T0Þ 2ffiffiffiffi
�

p Lp

ffiffiffiffiffiffi
Kt

p
;

STðtÞ ’ 2�ðTÞLp

ffiffiffiffiffiffi
Kt

p
;

(6)

where Lp ¼ 2�R. The factor �ðTÞ is given, for spherical
domains, by � ¼ erfc�1ð�Þ, where � ¼ ðT � T0Þ=ðTs �
T0Þ is the relative temperature of the isotherm under con-
sideration (erfc�1ðzÞ is the inverse complementary error
function). Although both quantities in Eq. (6) are propor-

tional to Lp

ffiffiffiffiffiffi
Kt

p
, the quantity associated with the isotherm

(i.e., c�ðTs � T0ÞSTðtÞ) differs from the real heat quantity
that has diffused. This is due to the value of�, which can be
very small if � is close to 1, a situation corresponding to the
experiment. In particular, the curves shown on Fig. 2 can
only be compared up to a shift along the x or y axis, which
represents a multiplication by � on logarithmic scale.
In general, the approximation (1) is expected to be more

accurate for isotherms with small difference T � T0 be-
cause nearly all the heat will be found inside the layer. In
fact, representing � as �> [�< (with �+ ¼ fr 2 � :
Tðr; tÞ + Tg), the integral in Eq. (3) splits in two parts,
which can be approximated at short times as

QðtÞ � c�ðTs � TÞVolð�>Þ þ c�ðT � T0ÞVolð�<Þ;
where the first term is close to c�ðTs � T0ÞSTðtÞ for T close
to T0, while the second term can be neglected in that case.
In the opposite situation, which is relevant for the experi-
ment, the approximation (1) fails.
We illustrate this idea by solving numerically Eqs. (2)

for the third generation of the quadratic von Koch curve
shown in Fig. 3. The solution was obtained by the quadratic
Lagrange finite differences method in the module
‘‘PDE, Coefficient Form’’ of COMSOL Multiphysics. The
time-dependent solver for a symmetric linear system
‘‘Spooles’’ was used. For these simulations, we set: Ts ¼
1 (a.u.), T0 ¼ 0, K ¼ 0:01 (a.u.), and L ¼ 1 (a.u.) (L is the
base of the snowflake curve). Once the solution Tðr; tÞ ¼
�ðr; tÞ is found, the isotherm curve rt was computed by
solving Tðrt; tÞ ¼ T with a chosen T and then the surface
area STðtÞ between the isotherm and the boundary was
calculated by a thresholding procedure (as for experimen-
tal images). Figure 3 shows that, at a given time, the zones
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defined by the isotherms depend strongly on their tempera-
ture. The relative positions of isotherms at a given time
illustrate the role of confinement, observed in the experi-
ment [Fig. 1(e)].

The total transferred heat QðtÞ is also obtained by inte-
grating the solution Tðr; tÞ over �. The results are sum-
marized in Fig. 2(b), which shows the normalized
transferred heat, QðtÞ=Qð1Þ, and the normalized surface
areas, STðtÞ=Stot, for three choices of the isotherm tem-
perature �: 0.1, 0.5, and 0.9 (a.u.), together with the trans-
ferred heat into a square of the same surface. The
normalization ensures that all the curves approach the
same saturation level. Several comments are in order.
(i) The heat transferred by the irregular radiator is larger
than that by the square. (ii) The normalized transferred heat
(solid curve) indeed exhibits the three scaling regimes
discussed above: short-time behavior / t0:5, intermediate
behavior / t0:25, and finally saturation. The asymptotics
are shown by dashed and dash-dotted curves, respectively.
(iii) Three normalized surface areas (shown by circles,
squares, and triangles) have been shifted along the hori-
zontal axis by factors 5, 1, and 0.11 in order make them
follow the solid curve. These shifts (on logarithmic scale)
are equivalent to the choice of the appropriate values for
the coefficient �ðTÞ. As expected, the curve with � ¼ 0:1
shows the best agreement with the solid curve for the
transferred heat, while that with � ¼ 0:9 exhibits a strong
deviation at long times. (iv) Deviations at short times can

be attributed to an inaccurate computation of the surface
area STðtÞ by the thresholding procedure. Although this
computation could be improved for isotherms obtained
from numerical simulations, the thresholding procedure
remains unavoidable for experimental images. In order to
be able to compare numerical and experimental images, we
used the same image processing in both cases. (v) The
surface area STðtÞ estimated from experimental images is
also shown in Fig. 2(a). This curve closely follows the
numerical curve with � ¼ 0:9. The agreement between
numerical simulations and the experiment can be consid-
ered as good. This consideration is reinforced by the fact
that taking care of the scale of temperature (40 to 18
centigrade) the value 0.9 corresponds to a temperature of
37.8 centigrade while the isotherm color (yellow) is cali-
brated for 37 centigrade. (vi) The experiment does not
allow a good determination of the short-time regime be-
cause the heat propagation was faster than the time to set
the camera so that the earlier times could not be monitored.
In summary, the heat transfer in an irregularly-shaped

domain with a prefractal geometry has been studied ex-
perimentally and numerically. The temperature evolution
has been visualized experimentally by monitoring isocolor
or isothermal lines. The area of a diffusion layer between
the irregular heat source and a chosen isothermal line has
been computed by thresholding the sequence of recorded
images. We have shown that the de Gennes suggestion to
describe the diffusion layer by a Minkowski sausage and to
use its area as a proxy of the total amount of heat trans-
ferred up to time t applies only to temperatures far from
that of the heat source. For temperatures close to the heat
source, confinement effects play an important role so that
the temperature spatial distribution is very different from
a Minkowski layer.
We have then shown in a particular prefractal case that

irregular morphology significantly speeds up heat transfer.
The ideas and concepts developed in this study apply to
any irregular shape, fractal or not. This suggests that
irregular or fractal shapes can be used to increase heat
removal from pulsed heat sources in electronics and micro-
electronic devices. Depending on temperature, the phe-
nomenon may or may not be described by the concept of
a Minkowski layer. More generally, these results apply to
all physical phenomena governed by the Fourier equation,
such as particle diffusion, spin diffusion, and diffusion
regimes in electrochemistry.
The authors acknowledge the contribution by Viktor K.
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experiment.
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FIG. 3 (color online). Three temperature zones at t ¼ 0:1 s:
�ðr; tÞ> 0:9 (yellow), 0:1< �ðr; tÞ< 0:9 (white), and �ðr; tÞ<
0:1 (blue). The frontiers between successive zones are the
isotherm at � ¼ 0:9 (a.u.) and � ¼ 0:1 (a.u.), which are com-
pared to the Minkowski sausage of width

ffiffiffiffiffiffi
Kt

p
(shown by the

thick solid line), at t ¼ 0:1 s.
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