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Holographic optical tweezers are used to construct a static bistable optical potential energy landscape

where a Brownian particle experiences restoring forces from two nearby optical traps and undergoes

thermally activated transitions between the two energy minima. Hydrodynamic coupling between two

such systems results in their partial synchronization. This is interpreted as an emergence of higher

mobility pathways, along which it is easier to overcome barriers to structural rearrangement.
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Activated dynamics is ubiquitous in physics, chemistry,
and biology [1,2]. Escape from a stable state occurs via
transition events by which a system crosses an energy
barrier, falling into a neighboring state. On the small length
scales of colloidal particles and biological macromole-
cules, it is the surrounding fluid which provides the re-
quired fluctuations to overcome a barrier and, at the same
time, the viscosity needed to relax the system in the second
minimum by dissipating energy. With the addition of a
spatial potential landscape consisting of two or more min-
ima, such an environment allows a colloidal particle to
undergo hops between the minima, provided that any
energetic maximum is surmountable by thermal fluctua-
tions [3–5]. Starting from a Fokker-Planck formulation of
Brownian motion in bistable potentials, Kramers [1] was
able to obtain an analytical expression for the hopping rates
that depends solely on the local features of the underlying
potential. McCann et al. [3] used two separate HeNe lasers
to construct a bistable optical landscape where a 600 nm
silica sphere was confined in a solvent fluid. The sphere
hopped back and forth between the traps, providing the
ideal representation of Kramers’s ideas, and elegantly con-
firmed the link between hop rates and the features of the
potential landscape. Since this first quantitative test of
Kramers’s theory, a number of experiments have been
published investigating how the hop rates of stochastic
oscillations behave under modulation of the potentials
[6–10]. By asymmetrically modulating the depth of the
potential wells and hence the phase between the forcing
and the activated transitions, Simon and Libchaber [6]
observed the synchronization of stochastic oscillations
within a period equal to the mean Kramers time.

On this micron scale, both fluctuations and friction dis-
play long-range hydrodynamic correlations that inevitably
couple the dynamics of suspended objects. For example,
two colloidal particles in independent optical traps display

correlations in their Brownian motions [11]. Whether the
same hydrodynamic interaction could result in some de-
gree of correlation in the thermally activated dynamics of
nearby bistable systems is still an open and important
question. Understanding how hydrodynamics can bias ac-
tivated hops over energy barriers impacts the study of the
slow dynamics of structural rearrangements in colloidal
glasses and gels.
In this Letter, we use two colloidal spheres trapped in

neighboring but separate bistable optical landscapes to
reveal a significant difference between symmetric and
antisymmetric simultaneous hops. While we measure a
significant biasing, the total number of simultaneous hops
transpires only to be that expected from two random os-
cillators. This is due to the stochastic nature of our oscil-
lators, whose dynamics are driven by thermal fluctuations
alone. We show that the difference between the number of
symmetric and antisymmetric hops reduces as the inverse
separation between the two systems, showing that the
strength of the phenomenon scales with first order in the
hydrodynamic coupling.
Sculpting of the bistable optical landscape is achieved

by a holographic phase element generated by a gratings
and lenses algorithm [12,13]. Holograms are imaged at the
back aperture of a Carl Zeiss �100 1.3 NA oil-immersion
microscope objective and focused into a multispot array
located at the focal plane (Fig. 1). Each bistable potential is
constructed by having two individual focal spots placed in
close proximity, such that a surmountable barrier forms
between the two traps. We create two bistable potentials
separated by a distance s, which is also controlled holo-
graphically. Care is taken to maintain symmetric bistable
potentials by adjusting the optical intensities of each
trap. Stilgoe et al. have recently given a report on the
complexity of creating optical potentials using two optical
traps [14]. Our samples are prepared with silica spheres (of
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radius a ¼ 0:4 �m, Bangs Laboratories) in deionized,
distilled water with a 1:106 ratio. When preparing our
samples, we add a weak saline solution just before sealing,
so that any free debris is immobilized on the cover slip due
to the reduced Debye length [15] while still allowing
enough time to capture the two spheres required for the
experiment. Sample cells are constructed with a single
concave microscope slide (concave depth ¼ 500 �m)
and a square cover slip (thickness number 1.5), sealed
with UV-curing optical adhesive. Using a few mW of
frequency-doubled Nd:Yag laser light (532 nm), the trap
stiffness in each trap is set at �1 pN=�m�1. A Prosilica
GE650 camera, operating at a frame rate of 1.55 kHz, is
used to track the position of the spheres in the x� y plane.
Using a center-of-mass algorithm, these in-plane displace-
ments are measured with nm precision [16]. Time series of
the spheres’ center of mass, xðtÞ and yðtÞ, are extracted in
blocks of 105 frames and accumulated for a total time
period of 2–3 hours, significantly longer than the average
between hops, which is of the order of 1 s.

Since the sampling rate is much greater than the corner
frequency in the power spectrum of particle fluctuations,
fc � 20 Hz, the normalized histogram of particle positions
�ðx; yÞ provides a direct measurement of the Boltzmann
distribution, �ðx; yÞ ¼ Z�1 exp½�Uðx; yÞ=kBT�, where kB,
T, and Z are, respectively, the Boltzmann constant, the
temperature of the surrounding fluid, and the normalization
constant. By inverting �ðx; yÞ, we can directly access the
underlying optical potential in units of kBT [Figs. 2, 3(b),
and 3(d)].

The obtained potentials are shown in Figs. 2(a)–2(c)
for three separations, s ¼ 1:2, 2.0, and 2:8 �m. The po-
tentials along the hopping axis for system a [dark gray
(blue) �’s] and system b [light gray (red) �’s], presented
in Figs. 2(d)–2(f), confirm that the optical landscapes of

each system are not significantly perturbed as they ap-
proach. It is worth noting that, although the optical land-
scape is made of two optical traps whose centers are
separated by 800 nm, the separation between the minima
of the obtained bistable potential is only d� 400 nm. This
is due to the sphere experiencing restoring forces from both
optical traps, leading to an offset in the equilibrium posi-
tion in each individual trap and shortening the hopping
distance.
Figures 3(a) and 3(c) show a 10 s sample trace of particle

position on the x axis (the axis along which hopping
occurs) taken at large separation, s ¼ 3:6 �m. The corre-
sponding potentials are given in Figs. 3(b) and 3(d). A
single-particle power spectrum is shown in Fig. 3(e) for the
shortest separation, s ¼ 1:2 �m. Two separated time
scales are visible, a low frequency component describing
the hopping dynamics and a high frequency component
describing the fluctuations around the local minima. For an
isolated hopping system, the Fourier amplitude, x̂ð�Þ, of
the particle’s x position will be distributed with a double
Lorentzian spectrum,

hx̂�ð�Þx̂ð�Þi ¼ kBT

�k

fc
�2 þ f2c

þ d2

4�

2fh
�2 þ ð2fhÞ2

: (1)

The first term is the standard spectrum for a bead of
mobility m0 ¼ 1=ð6��aÞ (where � ¼ 1 mPa s is taken
as the viscosity) in an optical trap of strength k, and thus,
a corner frequency given by fc ¼ m0k=2�. The second
term describes hopping events over a distance d and a
jump probability per unit time given by fh. The hopping
frequency can be anticipated using Kramers’s theory
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FIG. 1 (color online). Holographic optical tweezers. A spatial
light modulator (SLM) is used to generate multiple traps at the
focal plane of the �100 oil-immersion microscope objective.
Silica spheres are trapped with a frequency-doubled Nd:Yag
laser, 5 �m above the cover slip. The left inset shows the
hologram used to landscape two side-by-side bistable potentials.
A schematic of the two optically trapped spheres in independent
bistable potentials is shown in the inset on the right.
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FIG. 2 (color online). Optical potential landscapes experi-
enced by two 800 nm silica spheres. Potential energy distribu-
tions are recovered from particle trajectories, xðtÞ and yðtÞ, as
described in the text. The data are binned into bins of size
10 nm2 for (a)–(c) and 2 nm for (d)–(f).
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fh ¼ !0 exp½��U=kBT�, where �U is the height of the
potential barrier and the prefactor !0 ¼ m

ffiffiffiffiffiffiffiffiffiffi

�i�s
p

depends

on the particle mobility m0 and on the curvatures of the
underlying potential at the stationary points �i;s ¼
j@2U=@x2jx¼xi;s . Knowing the temperature, viscosity, and

particle radius means that all remaining parameters can be
directly evaluated from the features of the stationary points
in the obtained potential energy. The resulting curve is
shown as a solid line in Fig. 3(e) and fits the measured
power spectrum well. Searching for hydrodynamic corre-
lations, we plot in Fig. 3(f) the correlation spectra
hx̂�að�Þx̂bð�Þi normalized by the average single-particle
power spectra ð1=2ÞP�¼a;bhx̂��ð�Þx̂�ð�Þi. A marked posi-

tive correlation at high frequencies gets larger as the two
systems approach. This is the well-known phenomenon by
which the mobility of rigid motions is higher than that for
relative motions, so that at short times the particles tend to
move collectively [11]. However, at low frequencies domi-
nated by hopping dynamics, no sign of correlation is ob-
servable even when the two systems are close together.

Despite the lack of any obvious sign of collective motion
in the low frequency correlations spectrum [Fig. 3(f)],
further analysis of our data reveals a significant correlation.
Rather than averaging the correlation over all points, we

examine only the instances where both particles hop at the
same time, either in the same direction (symmetric) or the
opposite direction (antisymmetric). To examine these in-
stances, we first average the position time series in blocks
of 60 frames [Figs. 3(a) and 3(c), light gray (blue) line].
This acts as a low pass filter with a cutoff frequency of
about 25 Hz, just higher than the trap corner frequency,
filtering out the fast dynamics of fluctuations during a hop.
The blocked data are then digitized into a two-state vari-
able �xðtÞ 2 �1;þ1, denoting the left and right states of the
bistable potential [Figs. 3(a) and 3(c), dark gray (red) line].
For each system, we then extract a time series of hop events
from �1 ! þ1 and þ1 ! �1. These data represent a
cumulative acquisition of 215 minutes at 1550 Hz, with
�104 transition events. The distributions of intervals be-
tween hops are fitted with an exponential decay, yielding
the characteristic dwell time for each state. These mea-
sured dwell times are consistent with Kramers’s formula
applied to the detailed shape of the underlying potential.
Each bistable potential is fitted with an eighth-order poly-
nomial [Figs. 3(b) and 3(d), red line], the second derivative
of which gives the Kramers prefactor term !0 when eval-
uated at the stationary points. Numerical results of!�1

k are

given in the third column of Table I. The dwell times are
measured from xðtÞ, the mean of which are given in the
second column. The probability distribution of the dwell
times is fitted with an exponential decay, giving the first
column in Table I.
Each transition event is assigned a duration of one

blocked sequence of frames, �t ¼ 39 ms. We count the
number of occurrences of possible coincident events,
namely, p and n, where we define a p coincident as having
occurred when both spheres hop in the same direction and
an n coincidence when both spheres hop in opposite direc-
tions. Figure 4(a) shows this nomenclature. It is expected
that two uncoupled stochastic oscillators will show a finite
number of coincidences, hNi, depending on the observed
time period, T, and the temporal window, �t, in which we
define a coincidence and the transition rates of the two
oscillators, 	�1

a;b, given by

hNi ¼ �tTð	a	bÞ�1: (2)

a

b

c

d

e
f

FIG. 3 (color online). (a),(c) 10 s sample of the spheres’
position along the x axis (black line) for each system separated
by s ¼ 3:6 �m. The block filtered [light gray (blue) line] and
digitized traces [dark gray (red) line] are also shown. (b),
(d) Corresponding potentials (black�’s) with fitted polynomials
(red line). (e) Single-particle power spectrum for s ¼ 1:2 �m,
along with a double Lorentzian fit, as discussed in the text.
(f) Correlation spectra for three separations, evidencing hydro-
dynamic correlations in the high frequency region.

TABLE I. Characteristic dwell times for each individual po-
tential obtained by exponential fitting to the probability distri-
butions of the states’ dwell times, along with the mean value of
raw dwell times and from Kramers’s formula. All numbers are in
units of s.

Fit Mean !�1
k

System a 0.54 0.57 0.46

0.66 0.68 0.62

System b 0.48 0.50 0.37

0.74 0.73 0.61
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For two uncoupled stochastic oscillators, we expect an
equal probability for symmetric and antisymmetric simul-
taneous hops (p ¼ n). Figure 4(a) shows the measured
probabilities of p and n coincidences occurring over a
range of system separations. With the two systems placed
in close proximity to each other (s� 3a), the probability of
observing a p coincidence is significantly greater than

observing an n coincidence (p� n > hNi�1=2). At increas-
ing separations, both p and n coincidence probabilities
approach 0.5, ruling out the possibility that the synchroni-
zation could be ascribed to asymmetries in the optical
landscapes. We note that the total number of observed
coincidences, ðpþ nÞ=hNi, is unchanged with separation
[Fig. 4(b)]. Coming back to Kramers’s formula for a
single-particle hopping rate, we notice that particle mobil-
ity appears as a prefactor to an energetic activation term.
We may then conjecture that the rates of symmetric hops
and antisymmetric hops have a similar form with an acti-
vation term and a prefactor that would also depend,
respectively, on the collective and relative mobilities
[17–19]. Moreover, the splitting between p and n seems
to decay with distance, as is the case for hydrodynamic
splitting between collective and relative mobilities, as
shown by the 0:5� ð3=4Þða=sÞ lines in Fig. 4(a).

In conclusion, the thermally activated jumps of two
800 nm silica spheres in neighboring bistable optical land-
scapes are shown to be coupled via hydrodynamic interac-
tions. Because of the higher mobility of collective motions,
when two systems are in close proximity, there is a higher
probability of observing a symmetric hop, while antisym-
metric hops are less common.We argue that the experimen-
tal environment studied here provides an idealized
representation of interacting stochastic oscillations that
occur in nature. It will be interesting to extend the present
study to a larger ensemble of bistable systems. For example,
looking for the emergence of more complex, cooperatively
rearranging regions could aid the understanding of the role
of hydrodynamic interactions in the glassy dynamics of
concentrated colloidal suspensions [20].
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FIG. 4 (color online). (a) Probability of coincidences over a
range of system separations s. p and n coincidences are defined
by the inset cartoons. Coincidence events are counted as de-
scribed in the text and presented as light gray (red)�’s for p and
dark gray (blue) �’s for n. Data are normalized by pþ n. The
solid lines represent the splitting in p and n, assuming a linear
dependence on hydrodynamic coupling with a strength of 3a=4s.
(b) The total counted coincidences at each system separation
normalized by the expected number, hNi [Eq. (2)], with an error
of � ffiffiffiffiffiffiffiffiffiffiffiffiffi

pþ n
p

=hNi.
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