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Ground states of spin lattices can serve as a resource for measurement-based quantum computation.

Ideally, the ability to perform quantum gates via measurements on such states would be insensitive to

small variations in the Hamiltonian. Here, we describe a class of symmetry-protected topological orders in

one-dimensional systems, any one of which ensures the perfect operation of the identity gate. As a result,

measurement-based quantum gates can be a robust property of an entire phase in a quantum spin lattice,

when protected by an appropriate symmetry.
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Quantum computation exploits quantum entanglement
to achieve computational speedups. However, creating en-
tanglement between particles in a sufficiently controlled
way to allow for quantum computation has proved a
major technical challenge. One potential approach is
measurement-based quantum computation (MBQC) [1,2],
where universal quantum computation is achieved by
means of nonentangling operations (namely, single-
particle measurements) on an already entangled resource
state. The resource state need not be prepared coherently;
instead, one could imagine constructing interactions be-
tween neighboring spins on a lattice, governed by a gapped
Hamiltonian whose ground state is a universal resource
state for MBQC [3–5]. For this approach to be robust, the
capability of ground states to serve as a resource for
MBQC would have be insensitive to small variations in
the Hamiltonian, like a form of quantum order [3].

In this Letter, we draw an explicit connection between
MBQC and a type of quantum order called symmetry-
protected topological order (SPTO) [6–8]. Specifically,
we will describe a class of quantum phases in which the
perfect operation of the identity gate in MBQC can be
derived directly from the presence of SPTO; consequently,
this perfect operation is a robust property which is main-
tained throughout the entire phase. Our results will be
expressed in the context of one-dimensional (1D) systems.
Such systems are not expected to allow for universal
MBQC, but the ground states of certain 1D spin chains
can be used as quantum computational wires [9], meaning,
loosely, that through single-particle measurements one can
propagate a logical qubit down the chain while applying
single-qubit unitaries. Later, we will also explain how our
results can be applied to higher-dimensional systems
(which can allow for universal MBQC) by considering
them as ‘‘quasi-1D’’.

A well-known example of a one-dimensional system
whose ground state can serve as a quantum computational
wire is the Affleck-Kennedy-Lieb-Tasaki (AKLT) antifer-
romagnetic spin-1 chain [10,11]. This system lies in a

quantum phase, called the Haldane phase, characterized
by SPTO and protected by a Z2 � Z2 rotation symmetry
[12,13], so that no symmetry-respecting path of local
Hamiltonians can interpolate between the Haldane phase
and a product state without crossing a phase transition. The
perfect operation of the identity gate throughout the
Haldane phase has been noticed before in various guises
[14,15], as well as the strictly weaker condition of diverg-
ing localizable entanglement length [16]. It should be
emphasized that in MBQC, repeated application of the
identity gate corresponds to the propagation of a logical
state arbitrarily far down the chain without error. Thus, the
identity gate is not a null operation in this context, and
its perfect operation is a striking and nontrivial property of
the Haldane phase.
Our purpose in this Letter will be to show explicitly how

the perfect operation of the identity gate arises as a direct
manifestation of SPTO. As a result, we can apply our
technique more generally to a whole class of quantum
phases characterized by SPTO, including phases contain-
ing the 1D cluster state, qudit cluster states [17], and
cluster states in higher dimensions. In addition, we show
that gates other than the identity are not expected to exhibit
similar robustness, explaining the numerical observations
in Ref. [15].
Symmetry protection of the identity gate in correlation

space.—The connection between SPTO and MBQC
will be expressed through the correlation-space picture of
Ref. [18], which is a particularly natural way to understand
the operation of gates in 1D resource states. This picture
assumes a resource state j�i that can be represented as a
matrix-product state (MPS),

j�i ¼ X

k1;...;kN

hRjA½kN�A½kN�1� � � �A½k1�jLi � jk1; . . . ; kNi;

(1)

where each A½kj�, kj ¼ 1; . . . ; d is a linear operator acting

on aD-dimensional vector space (known as the correlation
space), jLi and hRj are states in correlation space, and d is
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the dimension of the Hilbert space of each spin. Here we
are assuming translational invariance, for notational sim-
plicity only. When a projective measurement is performed
on the first spin, with outcome jc i, the effect is to remove
the first spin from the chain and induce an evolution jLi !
A½c �jLi on the correlation system, where we use the
notation A½c � ¼ P

kA½k�hc jki.
As an introduction to our result, we will first state it for

the special case of the Haldane phase. One system within
this phase is the spin-1 AKLT chain, for which the ground
state has an exact MPS representation of the form Eq. (1),
withD ¼ 2. Expressed in the basis fjxi; jyi; jzig, where j�i
is the zero eigenstate of the spin-1 operator S� for � ¼ x,
y, z, we have AAKLT½�� ¼ ��, where �� are the Pauli spin
operators. Thus, the AKLT state has the particular property
that there exists a basis, namely the fjxi; jyi; jzig basis, such
that measurements in this basis induce an identity evolu-
tion (up to Pauli by-products) on the correlation system.
Additionally, by measuring in a basis corresponding to a
rotated set of axes, it is possible to execute any single-qubit
rotation in correlation space (up to Pauli by-products) [11].
Therefore, the AKLT state can be said to act as a quantum
computational wire.

We will now extend our correlation-space analysis be-
yond the AKLT chain to other ground states within the
Haldane phase. We confine our discussion to states that can
be exactly represented as anMPS with a bond dimensionD
that is independent of the system size. Because arbitrary
gapped ground states can be approximated by MPS [19],
we expect that our discussion will apply also to arbitrary
systems in the Haldane phase.

The Haldane phase containing the AKLT chain is pro-
tected by the Z2 � Z2 symmetry generated by the � rota-
tions about three orthogonal axes. The action of this
symmetry on a spin-1 chain can be written as a tensor
product ½uðgÞ��N , where N is the number of spins and uðgÞ
is the appropriate single-spin rotation operator for each
group element g in the symmetry group G ¼ Z2 � Z2.
We therefore refer to it as an on-site symmetry.

In general, the invariance of a ground state under such an
on-site symmetry leads to symmetry constraints on the
MPS tensor A½�� used to construct the state’s MPS repre-
sentation [7,8,20,21]; we will exploit these constraints to
prove our result. Specifically, under an injectivity assump-
tion which we expect to be satisfied in a gapped phase, we
have [7,8,20]

VðgÞyA½jc i�VðgÞ ¼ �ðgÞA½uðgÞyjc i�; (2)

where VðgÞ is some projective representation of G acting
on the correlation system, and �ðgÞ is a one-dimensional
linear representation of G. Now, in general VðgÞ can be
decomposed as a tensor sum of irreducible projective
representations as VðgÞ ¼ L

JVJðgÞ � ImJ
, where mJ is

the multiplicity of the irrep J in V. For any ground state
in the Haldane phase, it is a consequence of Lemma 2

below that only one irrep ~VðgÞ (of dimension 2) appears in
this decomposition, so that

VðgÞ ¼ ~VðgÞ � Ijunk: (3)

That is, we have a tensor product decomposition of the
correlation system into a protected subsystem [on which
VðgÞ acts irreducibly as ~VðgÞ] and a junk subsystem
(on which VðgÞ acts trivially). The states jxi, jyi, jzi are
simultaneous eigenstates of all the elements uðgÞ. By an
argument involving Schur’s Lemma (given in greater gen-
erality in Theorem 1), it follows that the tensor A appearing
in the MPS representation of the ground state must take the
form

A½�� ¼ �� � Ajunk½��; � ¼ x; y; z; (4)

for some set of operators Ajunk½�� acting on the junk

subsystem. Recall that A½�� is the evolution induced on
the correlation system when a projective measurement
results in the outcome j�i. Thus, Eq. (4) shows that the
ability to induce an identity evolution in the protected
subsystem (up to Pauli by-products, dependent on the
measurement outcome but independent of the resource
state) by measuring in the fjxi; jyi; jzig basis is dictated
by the symmetry properties of the MPS tensor; it is a
property not just of the AKLT state, but rather of the entire
Haldane phase.
Another state which can serve as a quantum computa-

tional wire is the 1D cluster state, which is the ground state
on a row of qubits of the local Hamiltonian H ¼
�P

iZi�1XiZiþ1. Like the AKLT state, the cluster state
has an exact MPS representation, and it lies within a
symmetry-protected phase with respect to a Z2 � Z2 sym-
metry [22], in this case generated by

Q
ievenXi and

Q
ioddXi.

We can treat this symmetry as on-site provided that we
group pairs of qubits into sites. The simultaneous
eigenbasis of the on-site symmetry representation is then
fjþþi;jþ�i;j�þi;j��ig, where j�i ¼ 1ffiffi

2
p ðj0i � j1iÞ

(we emphasize that this is a product basis, so that blocking
sites does not change the single-qubit nature of the mea-
surements). Identical to the AKLT case above, we again
find that the ability to perform the identity gate by mea-
suring in the appropriate basis is maintained throughout the
phase. Similar results hold for the generalization of the
cluster state to d-dimensional particles [17], for which the
relevant symmetry group is Zd � Zd.
General statement of the result.—We will now give the

statement and proof of our result in a general setting. We
consider a ground state that is invariant under an on-site
symmetry ½uðgÞ��N , where uðgÞ is a representation of some
symmetry group G. We assume the ground state has an
MPS representation satisfying the symmetry condition (2),
and we absorb �ðgÞ into uðgÞ so that �ðgÞ ¼ 1. A projec-
tive representation VðgÞ is characterized by its factor sys-
tem !, such that
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VðgÞVðhÞ ¼ !ðg; hÞVðghÞ: (5)

An equivalence class of factor systems related by rephasing
of the operators VðgÞ is called a cohomology class, and we
denote the cohomology class containing a given factor
system ! as [!]. It was argued in Refs. [7,8] that
each cohomology class of G corresponds to a distinct
symmetry-protected phase. For example, in the case of
the MPS AAKLT½�� ¼ �� for the AKLT state, where G ¼
Z2 � Z2 ¼ f1; x; y; zg, it can be verified that Eq. (2) is
satisfied with the Pauli projective representation Vð1Þ ¼ I
and Vð�Þ ¼ �� for � ¼ x, y, z. This corresponds to a
nontrivial cohomology class [not containing the trivial
factor system !ðg; hÞ ¼ 1], so that the AKLT chain lies
in a nontrivial symmetry-protected phase.

We now relate the symmetry condition (2), which holds
throughout the entire symmetry-protected phase, to the
operation of gates in the correlation-space picture. We
consider the case where the symmetry group G is a finite
Abelian group. For simplicity, we will focus on the case
where the cohomology class [!] characterizing the
symmetry-protected phase is of a particular type. (An
analogous result holds for all nontrivial cohomology
classes, but the structure of correlation space is more
involved in that case.) In particular, we consider the case
where the factor systems contained in [!] are maximally
noncommutative, meaning that the subgroupGð!Þ ¼ fg 2
Gj!ðg; hÞ ¼ !ðh; gÞ8 h 2 Gg is trivial. (Note, this con-
dition does not depend on the choice of the representative
!.) Under these conditions, our main result can be stated as
follows:

Theorem 1.—Consider a symmetry-protected phase
characterized by a finite Abelian symmetry group and a
maximally noncommutative cohomology class [!]. Then
for any MPS in this phase, there exists a decomposition of
the correlation system into protected and junk subsystems
and a site basis fjiig, such that measuring in the basis fjiig
leads to an identity gate evolution on the protected sub-
system up to an outcome-dependent by-product Bi. That is
to say, the MPS tensor A has the decomposition

A½i� ¼ Bi � Ajunk½i�: (6)

The by-product operators Bi are unitary and are elements
of a finite group. Furthermore, they are the same for all
possible MPS in the symmetry-protected phase.

For example, the factor system for the Pauli projective
representation of Z2 � Z2 is maximally noncommutative,
and Eq. (4) is a special case of Eq. (6).

Proof of Theorem 1.—Wewill make use of the following
consequences of maximal noncommutativity of a factor
system:

Lemma 1.—Let ! be a maximally noncommutative
factor system of a finite Abelian group G. For every linear
character � of G, there exists an element h� 2 G such

that, for any projective representation VðgÞ with factor
system !,

Vðh�ÞVðgÞ ¼ �ðgÞVðgÞVðh�Þ: (7)

Proof.—We define a homomorphism ’: G ! G�, where
G� is the group of linear characters of G, according to
½’ðhÞ�ðgÞ ¼ !ðh; gÞ!ðg; hÞ�1. (That ’ðgÞ 2 G� for all g
and ’ is a homomorphism follows from the associativity
condition satisfied by !; e.g., see Lemma 7.1 in Ref. [23]).
Because the kernel of ’ is Gð!Þ, which is trivial by
assumption, and jGj ¼ jG�j for finite Abelian groups, it
follows that ’ is invertible. We then set h� ¼ ’�1ð�Þ. It
can be checked that this satisfies Eq. (7). h
Lemma 2.— For each maximally noncommutative factor

system ! of a finite Abelian group G, there exists a unique
(up to unitary equivalence) irreducible projective represen-
tation ~VðgÞ with factor system !. The dimension of this

irreducible representation is
ffiffiffiffiffiffiffijGjp

.
Proof.—See Refs. [24,25]. h
For an MPS tensor A satisfying the symmetry condition

(2), Lemma 2 implies that there exists a tensor product
decomposition of the correlation system into a protected
and a junk subsystem such that VðgÞ acts within the pro-
tected subsystem as ~VðgÞ as in Eq. (3).
Now we can prove Theorem 1. We choose the measure-

ment basis fjiig to be the simultaneous eigenbasis of the
elements uðgÞ, such that uðgÞjii ¼ �iðgÞjii, where each �i

is a linear representation of G. Expressed in the basis fjiig,
Eq. (2) then becomes

VðgÞyA½i�VðgÞ ¼ �iðgÞA½i�: (8)

Making use of Eq. (7), we find that

VðgÞfVðh�i
ÞyA½i�g ¼ fVðh�i

ÞyA½i�gVðgÞ: (9)

We can now conclude by Schur’s Lemma that

A½i� ¼ ~Vðh�i
Þ � Ajunk½i� (10)

for some operators Ajunk½i�. Therefore, Theorem 1 holds

with Bi ¼ ~Vðh�i
Þ. h

Nontrivial gates.—In Theorem 1, we have proven that
the identity gate, which involves measuring in the simul-
taneous eigenbasis of the operators uðgÞ, is symmetry-
protected. We will now see that nontrivial gates (i.e., those
involving measurement in a different basis) are not sym-
metry protected.
For example, let us consider a measurement that on the

exact AKLT state would correspond to a rotation by an
angle 2� about the z axis (up to Pauli by-products). One of
the possible measurement outcomes is j�i � cos�jxi þ
sin�jyi. Then from the decomposition (4) of the MPS
tensor A for a generic state in the Haldane phase, we find
that

A½�� ¼ ðcos�Þ�x � Ajunk½x� þ ðsin�Þ�y � Ajunk½y�: (11)

If Ajunk½x� ¼ Ajunk½y� (as for the exact AKLT state), then

this implies
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A½�� ¼ ½ðcos�Þ�x þ ðsin�Þ�y� � Ajunk½x�; (12)

and the evolution on the protected subsystem is the same as
it would be for the exact AKLT state. However, there is no
symmetry constraint that guarantees Ajunk½x� ¼ Ajunk½y�
(because any choice whatsoever for Ajunk in Eq. (4) gives

rise to an MPS satisfying the symmetry constraints).
Therefore, the evolution induced by measurements in this
basis is not fixed by the symmetry; similar arguments apply
to all nontrivial gates.

The preceding discussion of nontrivial gates applies to
systems with only the Z2 � Z2 rotation symmetry, and
larger symmetry groups will lead to stronger constraints
on the MPS tensor. In particular, one might expect that for
the AKLT state, imposing the full SO(3) rotation symmetry
would lead to all gates being protected, because all gates
are achieved by measuring in the basis fjx0i; jy0i; jz0ig for
some rotated orthogonal set of axes x0, y0, z0. This would
indeed be true if only the spin-1=2 projective representa-
tion V1=2ðgÞ of SO(3) appeared in the irrep decomposition

of VðgÞ, so that VðgÞ ¼ V1=2ðgÞ � I. However, all the half-
integer spin representations of SO(3) have the same coho-
mology class, so this will not hold in general. Indeed, the
numerical results of Ref. [15] show reduced performance
of nontrivial gates. This should be contrasted with the
protocol of Ref. [26], where a logical qubit is encoded
into an explicitly spin-1=2 edge mode and particles are
adiabatically decoupled from the chain before being mea-
sured. In that case it was found that all gates operate
perfectly throughout the Haldane phase so long as the
full rotational symmetry is maintained.

Initialization and readout.—Apart from performing uni-
tary gates in correlation space, the other essential ingre-
dient for MBQC is the ability to initialize and read out
the state of the correlation system. It is easily verified
(in the same way as for nontrivial gates) that the usual
procedures for doing this in the cluster or AKLT states are
not symmetry-protected. However, a symmetry-protected
readout can be achieved throughout the Haldane phase
by terminating a finite chain of spin-1 particles with a
spin-1=2, as in Ref. [15].

Higher-dimensional systems.—The notion of symmetry-
protected topological order has recently been extended to
higher-dimensional systems [27,28], and we speculate that
our results could be generalized in this context. However, if
we consider a ‘‘quasi-1D’’ system whose extent in all but
one dimension is finite (but could be set arbitrarily large),
then the results of this Letter can be applied directly.

For example, a 2D cluster model of extent 2N in the
vertical direction (with periodic boundary conditions in
that direction) is in a nontrivial symmetry-protected phase
with respect to the ðZ2 � Z2Þ�N symmetry depicted in
Figure 1. This symmetry is represented in correlation
space by a tensor product of N copies of the Pauli repre-
sentation; this is a maximally noncommutative projective

representation of the symmetry group. By Lemma 2,
the protected subsystem has dimension 2N . Therefore,
throughout the symmetry-protected phase there is a
capacity for N qubits to be propagated in the horizontal
direction by measuring each ‘‘site’’ (here a pair of adjacent
columns) in a simultaneous eigenbasis of the symmetry.
For the particular representation of ðZ2 � Z2Þ�N depicted
in Figure 1, it is straightforward to show that there exists
such an eigenbasis which is also a product basis over the
qubits making up the site, so that this propagation can be
achieved by single-qubit measurements.
Conclusion.—In summary, we have identified a class of

symmetry-protected topological orders, each of which en-
sures the perfect operation of the identity gate in MBQC
throughout an entire symmetry-protected phase. Such con-
nections between MBQC and quantum order can be ex-
pected to lead to a greater understanding of the potential
for single-particle measurements on ground states of
quantum spin systems to be a robust form of quantum
computation.
By contrast, we have shown that the perfect operation of

nontrivial gates is a property only of specific systems
within such a phase, contrary to some previous hopes [3].
However, we have not given a complete characterization of
the operation of nontrivial gates away from these points,
and it is possible that their performance could be made
arbitrarily good by a suitable choice of adaptive measure-
ment protocol, as in Ref. [15].
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