
Increasing Entanglement Monotones by Separable Operations

Eric Chitambar,* Wei Cui,† and Hoi-Kwong Lo‡

Center for Quantum Information and Quantum Control (CQIQC), Department of Physics and Department of Electrical and Computer
Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada

(Received 5 December 2011; revised manuscript received 10 April 2012; published 15 June 2012)

Quantum entanglement is fundamentally related to the operational setting of local quantum operations

and classical communication (LOCC). A more general class of operations known as separable operations

(SEP) is often employed to approximate LOCC, but the exact difference between LOCC and SEP is

unknown. In this letter, we compare the two classes in performing particular tripartite to bipartite

entanglement conversions and report a gap as large as 12.5% between SEP and LOCC, which is the

first known appreciable gap between the classes. Our results rely on constructing a computable

entanglement monotone with a clear operational meaning that, unlike all other such monotones previously

studied, is not monotonic under SEP. Finally, we prove the curious fact that convergent sequences of

LOCC protocols need not be LOCC feasible in the limit.
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In the ‘‘distant lab’’ setting of quantum information
processing, entanglement is shared among spatially sepa-
rated parties, and its manipulation is implemented through
local quantum operations coordinated by classical commu-
nication (LOCC). A general LOCC operation consists of
each party taking turns in measuring his or her part of the
system and then broadcasting this result, which may affect
the choice of future measurements performed by other
parties. Understanding the possibilities and limitations of
LOCC processing is of great practical importance since
many quantum information tasks such as teleportation [1],
entanglement distillation [2], one-way quantum computa-
tion [3], and data hiding [4,5] are based on the LOCC
paradigm.

From a deeper perspective, LOCC operations play a
crucial role in entanglement theory, as it is a fundamental
rule that entanglement cannot increase under LOCC pro-
cessing [6–9]. Making this statement more precise involves
defining measures for entanglement, and when doing so it
is important to distinguish between the so-called finite and
asymptotic ‘‘regimes’’ [10,11]. In the finite case, the object
of interest is a single state � (or finite copies ��n), and we
are concerned with the entanglement possessed by � (or
��n). In contrast, for the asymptotic setting it is more
appropriate to treat the system as a source of some quan-
tum state �, and the object of interest is the many-copy
limit limn!1��n. Consequently, when treating asymptotic
entanglement, the focus shifts from particular states per se
to their close approximations in the many-copy limit. The
finite and asymptotic cases are each of independent inter-
est, and their relevance depends on the particular physical
scenario. Throughout this Letter, we will focus on finite-
copy entanglement.

In the axiomatic approach to entanglement measures,
necessary conditions are specified for what any entangle-
ment measure must satisfy. While there is no universal

agreement on these axioms, in the finite-copy regime, the
essential property for some non-negative function � to
qualify as an entanglement measure is monotonicity under
LOCC: for an arbitrary state � and LOCC transformation
converting � into �� with probability p�, the inequality
�ð�Þ � P

�p��ð��Þ necessarily holds [9,10,12–14]. Any
function that satisfies this condition is called an entangle-
ment monotone.
The underlying effect of the axiomatic approach in the

non-asymptotic setting is that we define entanglement as
whatever cannot be increased by LOCC [7,13,15].
Therefore, an average increase of any entanglement mono-
tone � under a non-LOCC process (i.e., a violation of the
previous inequality) can rightfully be interpreted as an
increase in entanglement. In this Letter, we will construct
an entanglement monotone and provide an example of such
an increase when the non-LOCC process is a so-called
separable operation (defined below).
Despite its fairly intuitive physical description, general

LOCC operations are quite challenging to analyze
[11,16,17]. This difficulty can be somewhat alleviated by
considering the more general class of separable operations
(SEP), which for N parties consists of all completely
positive maps that allow for a representation of the form

Eð�Þ ¼ P
�A�ð�ÞAy

�, where A�¼M1;��M2;�� . . .�MN;�.

Using SEP to study LOCC has been useful for computing
bounds on entanglement distillation [12,18,19], deciding
distinguishability of states [20,21], and proving the bound
nature of PPT entanglement [22].
While LOCC � SEP and the two share many similar-

ities, it is well known that LOCC � SEP [23,24]. A dra-
matic example of this latter fact is the phenomenon of
‘‘non-locality without entanglement,’’ a term originally
used to describe sets of orthogonal product states indistin-
guishable by LOCC. Unfortunately, the exact difference
between LOCC and SEP is not well understood, and
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Ref. [23] could only quantify a tiny gap between the two of
order 10�6. Later in Ref. [25], another gap between SEP
and LOCC was reported in two qubits; however, this was
only on the order of 0.8%. A key contribution of this Letter
is finding, for the first time, a computable and analytic
LOCC monotonic function with a clear operational mean-
ing that, in fact, does increase under SEP. This allows us to
demonstrate an appreciable 12.5% operational gap be-
tween SEP and LOCC.

A final consequence of our findings is that convergent
sequences of LOCC protocols need not be implementable
by LOCC. What this means is that there exists a sequence

of LOCC mapsL1;L2; . . . converging to some map �L that
cannot be carried out through LOCC processing. This is
rather surprising since in contrast, global quantum opera-
tions, separable operations, and even LOCC operations
restricted to one-way communication are all closed under
convergent sequences of maps [26].

To obtain our results, we will focus on the task of
random-pair EPR distillation from a three-qubit W-class
state [28,29]. A W-class state is any state obtainable from

jWi ¼
ffiffi
1
3

q
ðj100i þ j010i þ j001iÞ by stochastic LOCC

[30], and up to a local unitary (LU) transformation, it takes
the form j’i ¼ ffiffiffiffiffi

x0
p j000i þ ffiffiffiffiffi

xA
p j100i þ ffiffiffiffiffiffi

xB
p j010i þffiffiffiffiffiffi

xC
p j001i, where x0 ¼ 1� xA � xB � xC. In fact, the vec-

tor ~x ¼ ðxA; xB; xCÞ uniquely characterizes the j’i such

that if j’i ¼
ffiffiffiffiffi
x00

q
j000000i þ ffiffiffiffiffi

x0A
p j100000i þ ffiffiffiffiffiffi

x0B
p j001000i þffiffiffiffiffiffi

x0C
q

j000010i for some other basis fj00i; j10ig, then xi ¼ x0i
[31]. A random-pair EPR distillation of j’i consists of the
multi-outcome transformation

j’i ! fpij; j�ðijÞig; (1)

in which j�ðijÞi ¼
ffiffi
1
2

q
ðj01i þ j10iÞ is a maximally en-

tangled state shared between parties i and j, obtained
with probability pij from j’i. When the initial state is

jWi, Fortescue and Lo have devised a family of protocols
that for any � > 0 can achieve this transformation with
probability pAB þ pAC þ pBC > 1� � [28].

We can better analyze the random distillation problem
by examining how W-class states transform under local
measurements. Up to LU transformations, a general local
measurement by party k can be represented by Kraus

operators fMðkÞ
� g, where

MðkÞ
� ¼

ffiffiffiffiffiffiffiffi
ak;�

p
bk;�

0
ffiffiffiffiffiffiffiffi
ck;�

p
 !

[31]. The diagonal elements satisfy
P

�a� ¼ 1 andP
�c� � 1. For a general W-class state with vector repre-

sentation ~x ¼ ðxA; xB; xCÞ, it is straightforward to compute
that the components transform as xk ! xk;� ¼ ck;�

p�
xk and

xj ! xj;� ¼ ak;�
p�

xj for j � 0, k, and each outcome �. It then

follows that [31]

x0 �
X
�

p�x�;0 xi �
X
�

p�x�;i 8i2fA;B;Cg: (2)

Next, we introduce two continuous functions defined
on the class of three-qubit W-class states. For a state
~x ¼ ðxA; xB; xCÞ, let fn1; n2; n3g ¼ fA; B; Cg such that
xn1 � xn2 � xn3 . Then define the functions

�ð ~xÞ :¼ xn2 þ xn3 � xn2xn3=xn1 ; (3)

�ð ~xÞ :¼ xn2 þ xn3 þ �ð ~xÞ: (4)

Note that�ðs ~xÞ ¼ s�ð ~xÞ and �ðs ~xÞ ¼ s�ð ~xÞ, where s is any
overall scaling to the elements of ~x. Also, in the two qubit
case x0 ¼ xn3 ¼ 0, and so �ð ~xÞ reduces to 2xn2 , a known

bipartite entanglement monotone [32].
Theorem 1.—(A) The function � is non-increasing on

average when party n1 does not change among the pre-
measurement and all the post-measurement states. (B) The
function � is always an entanglement monotone that
strictly decreases on average whenever a party with maxi-
mum component value makes a measurement.
Proof.—To prove these claims, it is sufficient to consider

weak measurements that have only two outcomes [33,34].
This is because any measurement can be decomposed into
a sequence of two outcome measurements, which can be
further decomposed into a sequence of weak binary out-
come measurements; by continuity, the functions � and �
will vary as smoothly as desired during a general trans-
formation. Thus without loss of generality, the Kraus
operators for the local measurements take the form

M1 ¼
ffiffiffi
a

p
b1

0
ffiffiffiffiffi
c1

p
 !

and

M2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p
b2

0
ffiffiffiffiffi
c2

p
 !

;

with a, c1, c2 � 1=2. (A) First consider when party n1
makes a measurement. Then

� �� ¼ xn2xn3=xn1ð1� a2=c1 � ð1� aÞ2=c2Þ: (5)

Noting that c2 � 1� c1, we expand Eq. (5) about the point
ða; c1Þ ¼ ð1=2; 1=2Þ to obtain

� �� � �4ða� cÞ2 þOððc� 1=2Þ3; ða� 1=2Þ3Þ< 0: (6)

On the other hand, if either party n2 or n3 measures, we
can use the observation that �ð ~xÞ ¼ xn2ð1� xn3=xn1Þ þ
xn3 ¼ xn3ð1� xn2=xn1Þ þ xn2 along with Eq. (2) to see

that � is non-increasing on average. (B) By the decom-
position of a general transformation into a sequence of
weak measurements, each measurement either satisfies
the conditions of (A), or its pre-measurement state ~y
satisfies yn1 ¼ yn2 . In the first case, we know that � is

monotonic by part (A) and the fact that xn2 þ xn3 is
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non-increasing on average. On the other hand, when
yn1 ¼ yn2 , we have �ð ~yÞ ¼ 1� y0. The measurement on

~y will yield outcomes ~y1 and ~y2 for which 1� y0;i �
�ð ~yiÞ. Thus, the monotonic nature of �y0 implies that �
is non-increasing on average. Finally, note that whenever
party n1 measures, one of the outcome branches will
satisfy the conditions of (A) during part of the trans-
formation. Therefore, inequality (6) must hold at some
point, and hence � will be strictly decreasing overall. j

We have that �ð ~xÞ ¼ 1 if and only if xn1 ¼ xn2 and

x0 ¼ 0. Thus for the random-party distillation (1) of ~x, it
follows that pAB þ pAC þ pBC � �ð ~xÞ. However, this
bound is only asymptotically tight, as the next theorem
shows.

Theorem 2.—Let ~x satisfy xn3 > x0 ¼ 0. Then for every

� > 0 there exists an LOCC transformation that completes
(1) with overall success probability at least �ð ~xÞ � �.
However, for no LOCC transformation is the success
probability exactly �ð ~xÞ.

Proof.—We first construct an explicit protocol consist-
ing of measurements satisfying c1 þ c2 ¼ 1. Party n2 first
performs the binary-outcome measurement given by a1 ¼
xn2=xn1 and c1 ¼ 1. If outcome 2 occurs, party n2 is dis-

entangled, and parties n1 and n3 optimally transform into

j�ðn1n3Þi [32]. If outcome 1 occurs, party n3 performs a
measurement given by a1 ¼ xn3=xn1 and c1 ¼ 1. The two

outcomes are jWiwith probability 3xn2xn3=xn1 or j�ðn1n2Þi.
On jWi, the Fortescue-Lo Protocol of success probability
of at least �ð3xn2xn3=xn1Þ�1 is performed. This procedure

yields an overall EPR probability of at least �ð ~xÞ � �.
Now to achieve exactly probability �ð ~xÞ, a party with

maximal component value can never make a measure-
ment by Theorem 1. But suppose (without loss of general-
ity) we begin with a state whose components satisfy
xA � xB � xC. Then by decomposing the transformation
into a sequence of weak measurements, in order for
parties B and C to end up maximally entangled, one
branch of LOCC must pass through a state ~y for which
yA equals yB or yC, and a party with maximal component
value will perform the next measurement. The only other
option to avoid this scenario is that pBC ¼ 0 for the
transformation. But then by Theorem 1, the maximum
success probability is �ð ~xÞ< �ð ~xÞ. j

As an immediate corollary of Theorem 2, we can now
find convergent sequences of LOCC transformations
whose limit cannot be performed by LOCC.
Specifically, the Fortescue-Lo protocols [28] provide a
sequence of LOCC maps ðLnÞn¼1;... that respectively

achieve transformation (1) with probability pAB þ pAC þ
pBC > 1� 1

n for initial state jWi. Thus, the limit trans-

formation �L obtains pAB þ pAC þ pBC ¼ 1 which, by
Theorem 2, is not LOCC achievable. Note this argument
holds for both finite and infinite round protocols, with the
latter known to be strictly more powerful [17].

We next turn to the question of how well SEP can
perform transformation (1). For a three-qubitW-class stateffiffiffiffiffi
xA

p j100i þ ffiffiffiffiffiffi
xB

p j010i þ ffiffiffiffiffiffi
xC

p j001i with 1=2�xA�xB�
xC, the following separable measurement operators ran-
domly distill the state with probability one:

MAB¼ð�CBj0ih0jþj1ih1jÞ�ð�CAj0ih0jþj1ih1jÞ�j0ih0j
MAC¼ð�BCj0ih0jþj1ih1jÞ�j0ih0j�ð�BAj0ih0jþj1ih1jÞ
MBC¼j0ih0j�ð�ACj0ih0jþj1ih1jÞ�ð�ABj0ih0jþj1ih1jÞ
M000¼ð1��2

CA�
2
CB��2

BA�
2
BC��2

AB�
2
ACÞ1=2j000ih000j

M111¼j111ih111j; (7)

where �ij ¼
ffiffiffiffiffiffiffiffiffiffi
1�2xi
2xj

q
. As an example, consider the distilla-

tion rates on the one parameter family of states jc si ¼ffiffiffi
s

p j100i þ
ffiffiffiffiffiffiffi
1�s
2

q
ðj010i þ j001iÞ for 1

3 � s � 1
2 . The LOCC

optimal probability is given by �ðc sÞ ¼ 2ð1� sÞ � ð1�
sÞ2=ð4sÞ. A comparison of SEP and LOCC is depicted in
Fig. 1.
In this Letter, we have studied the random distillation of

three-qubit W-class states by separable operations and
LOCC. We have shown that the limit of Fortescue-Lo
Protocols cannot be implemented by LOCC, and therefore
in general one must use caution when speaking of ‘‘optimal
LOCC protocols.’’ We have shown a 12.5% difference
between LOCC and SEP in terms of success probability,
which is orders of magnitude larger than any previous
quantification of the operational gap. Extensions of these
results to multi-partite systems will be presented in forth-
coming manuscripts [35,36].
Experimentally, the protocol in Theorem 2 could possi-

bly be demonstrated with today’s technology due to the
relative ease in generating W-type entanglement [37,38].
Furthermore, specific setups for implementing random
distillation using ion traps have already been proposed
[39].

FIG. 1. LOCC vs SEP for the maximum probability of obtain-
ing an EPR pair between any two parties as a function of s when

the initial state is
ffiffiffi
s

p j100i þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� sÞ=2p ðj010i þ j001iÞ. The
LOCC probability is 2ð1� sÞ � ð1� sÞ2=4s. A gap of 12.5%
exists between SEP and LOCC.
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