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An equilibrium state can be represented by a pure quantum state, which we call a thermal pure quantum

(TPQ) state. We propose a new TPQ state and a simple method of obtaining it. A single realization of the

TPQ state suffices for calculating all statistical-mechanical properties, including correlation functions and

genuine thermodynamic variables, of a quantum system at finite temperature.
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The possibility of extracting statistical-mechanical in-
formation from a pure quantum state has been intensively
discussed in the context of the foundation of statistical
mechanics [1–4]. As we shall demonstrate here, it also
has a potential significance for a new formulation of sta-
tistical mechanics, and for a novel calculation technique.

As an illustration, let us consider an isolated system
composed of N spins. In the ensemble formulation, its
equilibrium properties are described by the microcanonical
ensemble, which is specified by E (energy), N, and so on.
The corresponding subspace (energy shell) in the Hilbert
space H N is denoted by EE;N . Let us consider a random

vector jc i ¼ P0
�
c�j�i in EE;N , where fj�ig� is an arbitrary

orthonormal basis set of EE;N ,
P0
�
denotes the sum over this

basis, and fc�g� is a set of random complex numbers drawn

uniformly from the unit sphere
P0
�
jc�j2 ¼ 1 in the complex

space of dimension dimEE;N . It was shown in Refs. [1–4]

that almost every such vector gives the correct equilibrium

values of a certain class of observables Â by hc jÂjc i. This
property was proved in Refs. [1,2] for observables of a
subsystem, which is much smaller than the whole system.
The case of general observables, including observables of
the whole system (such as the total magnetic moment and
its fluctuation), was analyzed in Refs. [3,4]. It was shown
that the above property holds not for all observables but for
observables that are low-degree polynomials (i.e., their
degree � N) of local operators [3]. We here call such
observables mechanical variables. We assume that all me-
chanical variables are normalized as dimensionless.

For conceptual clarity, we call generally a pure quantum
state that represents an equilibrium state a thermal pure
quantum state. Stating more precisely for the case where a
state jc i has random variables (such as the random vector
discussed above), we call jc i a TPQ state if for an arbitrary
positive number �

P ðjhc jÂjc i � hÂieqE;Nj � �Þ � ��ðNÞ (1)

for every mechanical variable Â. Here, PðxÞ denotes the
probability of event x, h�ieqE;N denotes the ensemble average,

and ��ðNÞ is a function (of N and �) which vanishes as
N ! 1. Inequality (1) means that for large N getting a
single realization of a TPQ state is sufficient, with high
probability, for evaluating equilibrium values of mechani-

cal variables. The vector
P0
�
c�j�i of Refs. [1–4] is a TPQ

state. However, genuine thermodynamic variables, such as
the entropy and temperature, cannot be calculated as

hc jÂjc i because they are not mechanical variables [5].
Moreover, such a TPQ state is practically hard to construct
because a basis fj�ig� of EE;N is hard to obtain.

In this Letter, we propose a new TPQ state, a novel
method of constructing it, and new formulas for obtaining
genuine thermodynamic variables. This enables one to
calculate all variables of statistical-mechanical interest at
finite temperature, from only a single realization of the
TPQ state. We also show that this novel formulation is very
useful for practical calculations.
New TPQ state.—We consider a discrete quantum sys-

tem composed of N sites, which is described by a Hilbert
spaceH N of dimension D ¼ �N , where � is a constant of
Oð1Þ. [For a spin 1=2 system, � ¼ 2.] Our primary purpose
is to obtain results in the thermodynamic limit: N ! 1
while E=N is fixed. Therefore, we hereafter use quantities

per site, ĥ � Ĥ=N (where Ĥ denotes the Hamiltonian),
u � E=N, and (u; N) instead of (E, N). [We do not write
explicitly variables other than u and N, such as a magnetic
field.] We assume that the system is consistent with ther-
modynamics in the sense that the density of states gðu;NÞ
behaves as [6]

gðu;NÞ ¼ exp½Nsðu;NÞ�; �0ðu;NÞ � 0: (2)

Here, sðu;NÞ is the entropy density, which converges to the
N independent one sðu;1Þ as N ! 1, �ðu;NÞ �
@sðu;NÞ=@u is the inverse temperature, and �0 �
@�=@u. Since D is finite, � may be positive and negative
in lower and higher energy regions, respectively. We here
consider the former region.
We propose the following TPQ state and the procedure

for constructing it. First, take a random vector jc 0i �P
icijii from the whole Hilbert space H N . Here, fjiigi is

an arbitrary orthonormal basis of H N , and fcigi is a set of
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random complex numbers drawn uniformly from the unit
sphere

P jcij2 ¼ 1 of the D dimensional complex space.
Note that this construction of a random vector is indepen-
dent of the choice of the basis fjiigi. One can therefore use a
trivial basis such as a set of product states. Hence, jc 0i can
be generated easily. On the whole, the amplitude is equally
distributed over all the energy eigenstates in this state (as is

easily seen by choosing the eigenstates of ĥ as the basis
fjiigi). Thus, the distribution of energy in jc 0i is propor-
tional to gðu;NÞ. We wish to modify this distribution into
another distribution rkðu;NÞ which has a peak at a desired
energy. This is easily done by operating a suitable poly-

nomial of ĥ onto jc 0i as we shall see below. We denote the

minimum and the maximum eigenvalues of ĥ by emin and
emax, respectively. Take a constant l of Oð1Þ such that
l � emax. Starting from jc 0i, calculate

uk � hc kjĥjc ki; (3)

jc kþ1i � ðl� ĥÞjc ki= k ðl� ĥÞjc ki k; (4)

iteratively for k ¼ 0; 1; 2; . . . . From Eq. (7) below, u0
corresponds to � ¼ 0; i.e., gðu;NÞ takes the maximum at
u ¼ u0. We will also show that uk decreases gradually
down to emin as k is increased, i.e., u0 > u1 > . . . � emin.
One may terminate the iteration when uk gets low enough
for one’s purpose. We denote k at this point by kterm. We
will show that kterm ¼ OðNÞ at finite temperature, and that
the states jc 0i; jc 1i; . . . ; jc ktermi become a series of

TPQ states corresponding to various energy densities,
u0; u1; . . . ; ukterm . Hence, the equilibrium value of an arbi-

trary mechanical variable Â is obtained as hc kjÂjc ki, as a
function of uk. For each realization of fcigi, a series of
realizations of TPQ states is obtained. We will show that

the dependence of hc kjÂjc ki on fcigi is exponentially
small in size N as N increases. Therefore, only a single
realization suffices for getting a fairly accurate value.
When better accuracy is required, one can take the average
over many realizations.

We now show that the states obtained with the above
procedure are TPQ states. Since jc 0i is independent of
the choice of the basis, we take the set of energy eigen-
states fjnign as fjiigi in order to see properties of jc ki
(although we never use such a basis in practical calcu-

lations). After k-times multiplication of l� ĥ, jc 0i ¼P
ncnjni turns into

jc ki / ðl� ĥÞkjc 0i ¼
X

n

cnðl� enÞkjni; (5)

where ĥjni ¼ enjni. Let us examine how the energy
density u distributes in this state. The (unnormalized)
distribution function of u is given by rkðu;NÞ �
��1
r

P00
n jcnj2ðl� enÞ2k, where �r ¼ oð1Þ and the sum is

taken over n such that en lies in a small interval [u�
�r=2, uþ �r=2). Since the density of states gðu;NÞ is
exponentially large in size N, rkðu;NÞ converges (in
probability) exponentially fast to its average. Hence,

rkðu;NÞ ¼ D�1 exp½N��ðu;NÞ�; (6)

where ��ðu;NÞ � sðu;NÞ þ 2� lnðl� uÞ with � � k=N.
Hereafter, we often denote k dependence by �; e.g., we
express uk as u�. Note that ��ðu;NÞ does not depend on
fcigi, because the dependence vanishes when we have
dropped negligible terms in Eq. (6). ��ðu;NÞ takes the
maximum at u�� which satisfies

�ðu��;NÞ ¼ 2�=ðl� u��Þ: (7)

Since �ðu��;NÞ and l� u�� are Oð1Þ, we find � ¼ Oð1Þ,
and hence k ¼ OðNÞ. Expanding ��ðu;NÞ around u��, and
noticing �00

� � @2��=@u
2 ¼�0ðu��;NÞ� 2�=ðl�u��Þ2< 0

from Eq. (2), we get ��ðu;NÞ ¼ ��ðu��;NÞ � j�00
�jðu�

u��Þ2=2þ �000
� ðu� u��Þ3=6þ . . . . Here, �000

� � @3��=@u
3 ¼

�00ðu��;NÞ � 4�=ðl� u��Þ3. Hence, rkðu;NÞ behaves
almost as the Gaussian distribution, peaking at u ¼ u��,
with the vanishingly small variance 1=Nj�00

�j. Let us

introduce the density operator 	̂k�ðl�ĥÞ2k=Trðl�ĥÞ2k,
which has the same energy distribution rkðu;NÞ. In the
ensemble formulation, 	̂k represents the equilibrium state
specified by ðu�;NÞ because rkðu;NÞ has a sharp peak.
We call the ensemble corresponding to 	̂k the smooth
microcanonical ensemble (because the energy distribution
is smooth). In a way similar to those of Refs. [3,4], we
can show that for an arbitrary positive number �

Pðjhc kjÂjc ki�Tr½	̂kÂ�j��Þ�k Âk2 rkðemin;NÞ
�2rkðu��;NÞ ; (8)

hc kjÂjc ki ¼ Tr½	̂kÂ�; (9)

for every mechanical variable Â. Here, k � k denotes the
operator norm [7], and the overline represents the random

average. With increasing N, k Â k2 grows at most as
a low-degree polynomial of N, whereas rkðemin;NÞ=
rkðu��;NÞ decreases exponentially at finite temperature
(i.e., for u�� > emin). Therefore, jc ki is a TPQ state for
the smooth microcanonical ensemble.
Genuine thermodynamic variables.—One might think it

impossible to obtain genuine thermodynamic variables by
only manipulating pure quantum states. However, our new
TPQ state makes it possible. In fact, by substituting u� for
u�� in Eq. (7), and using Eq. (11) below, we obtain

�ðu�;NÞ ¼ 2�=ðl� u�Þ þOð1=NÞ: (10)

This gives �ðu�;NÞ, with an error ofOð1=NÞ, as a function
of u� [because � and l are known parameters]. That is, one
obtains the temperature of the equilibrium state specified
by (u�; N) just by calculating u� with Eq. (3).
We can also obtain formulas with less errors. Using

Eq. (6) and the expansion of ��ðu;NÞ, we have
u�� ¼ u	� þOð1=N2Þ; u	� � u� � �000

� =2N�002
� : (11)

Substituting u	� for u�� in Eq. (7), we get a better formula

�ðu	�;NÞ ¼ 2�=ðl� u	�Þ þOð1=N2Þ: (12)
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One can evaluate �00
� and �

000
� easily by calculating hc kjðĥ�

u�Þ2jc ki ¼ 1=Nj�00
�j þOð1=N2Þ and hc kjðĥ�u�Þ3jc ki¼

�000
� =N

2j�00
�j3þOð1=N3Þ. Hence, using formula (12), one

obtains �ðu;NÞ (for u ¼ u	0 ; u
	
1 ; . . . ) with an error of

Oð1=N2Þ. In a similar manner, we can obtain formulas
whose errors are of even higher order of 1=N.

However, �ðu;NÞ is the inverse temperature of a finite
system, whereas we are most interested in its thermody-
namic limit �ðu;1Þ. In general, the difference j�ðu;NÞ �
�ðu;1Þj decays not so quickly as Oð1=N2Þ. To obtain a
better formula for �ðu;1Þ, we consider C identical copies
of the N-site system. We denote quantities of this CN-site

system by tilde, such as j ~c 0i � jc 0i
C. The state j ~c ~ki is
given by j ~c ~ki / ð~l� ~hÞC~kj ~c 0i, where ~h � ðĤ 
 1̂
ðC�1Þ þ
1̂ 
 Ĥ 
 1̂
ðC�2Þ þ � � � þ 1̂
ðC�1Þ 
 ĤÞ=CN. In the limit of
C ! 1, ~u~� approaches the canonical average of u in a

single copywith inverse temperature ~�ð~u~�;1Þ. At the point
where ~�ð~u~�;1Þ ¼ �ðu��;NÞ is satisfied, we can estimate
this canonical average, which is denoted by ~uc�, in the same
manner as Eq. (11). Then, we get ~uc� ¼ ~u	� þOð1=N2Þ,
where

~u 	
� � u	� þ �000

� þ 4�=ðl� u	�Þ3
2N½�00

� þ 2�=ðl� u	�Þ2�2
: (13)

We thus find

~�ð~u	�;1Þ ¼ 2�=ðl� u	�Þ þOð1=N2Þ; (14)

which gives the inverse temperature ~�ðu;1Þ (for u ¼
~u	0 ; ~u

	
1 ; . . . ) of an infinite system composed of an infinite

number of N-site systems. We expect that ~�ðu;1Þ is much
closer to �ðu;1Þ than �ðu;NÞ, because information of
�ðu;NÞ in the whole spectrum range of u is included in
~�ðu;1Þ. [By contrast, only the information at the peak of
�ðu;NÞ is included in�ðu;NÞ.] This will be confirmed later
by numerical computation.

We can also obtain the entropy density s as a function of
u and hz, by integrating � over u and �mz over hz [8]. For
example, for an arbitrarily fixed value of hz, we have

sðu2pÞ � sðu2qÞ ¼
Pq�1

‘¼p vðu	2‘; u	2‘þ1; u
	
2‘þ2Þ þ Oð1=N2Þ

by generalizing Simpson’s rule. Here, u stands for
(u; N) or (u; 1), p and q are integers, and vðx;y;zÞ�
ðx�zÞf�ðxÞþ�ðzÞg=2�ðx�zÞ2½xf�ðzÞ��ðyÞgþyf�ðxÞ�
�ðzÞgþzf�ðyÞ��ðxÞg�=6ðx�yÞðy�zÞ.

To sum up, we have established a new formulation of
statistical mechanics, whose fundamental formulas are
Eqs. (5) and (10) [9].

Numerical results.—Our formulation is easily imple-
mented as a method of numerical computation. We apply
it to the one-dimensional Heisenberg model in order to

confirm the validity of the formulation. We take Ĥ ¼
J
4

P
N
i¼1½�̂ðiÞ � �̂ðiþ 1Þ � hz
̂zðiÞ�, where J ¼ �1 (ferro-

magnetic) or þ1 (antiferromagnetic). For N ! 1, the
exact results at finite temperature (i.e., u > emin) have
been derived for magnetization mz � N�1

P
N
i¼1h
zðiÞiequ;N

[10], and for the correlation function �ðjÞ �
N�1

PN
i¼1h
zðiÞ
zðiþ jÞiequ;N [11]. They are plotted in

Figs. 1 and 2 by solid lines, where different lines correspond
to different values of u. We calculate the corresponding
results using our formulation. The results for N ¼ 24 are
plotted by circles [12], where each circle is obtained from a
single realization of TPQ state. According to Eq. (8), choice
of the initial random numbers fcigi has only an exponen-
tially small effect on the results at finite temperature. We
have confirmed this fact by observing that the standard
deviation, computed from ten realizations of a TPQ state
for each data point, is smaller than the radius of the circles of
these figures. Results for other values of N are plotted in
Fig. 1 for u ¼ �0:3J, and in the left insets of Fig. 2. It
is seen that the N dependence becomes fairly weak for
N * 20, and that the results for N ¼ 24 agree well with
the exact results. As illustrated by this example,N should be
increased in our method until the variation of the results
with increasingN becomes less than the required accuracy.
We have also computed�ðjÞ at finite hz and T, for which

exact results are unknown. The results at T ’ 0:45J are
plotted in the right inset of Fig. 2.
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FIG. 1 (color online). mz vs hz for J ¼ �1. Solid lines: exact
results for N ! 1, for various values of u [10]. Circles: results
of our formulation for N ¼ 24. Results for N ¼ 4–20 are also
shown for u ¼ �0:3J.
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FIG. 2 (color online). �ðjÞ for J ¼ þ1 and hz ¼ 0. Solid
lines: exact results for N ! 1, for various values of u [11].
Circles: results of our formulation for N ¼ 24. (left inset)
Results for N ¼ 16–24 at j ¼ 2 for u ¼ �0:36J. (right inset)
�ðjÞ at finite hz, obtained from a single realization of the TPQ
state at T ’ 0:45J.
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For genuine thermodynamic variables, the exact result
for 1=�ðu;1Þ [13] is plotted by solid lines in Fig. 3.

Corresponding results for 1=�ðu;NÞ and 1= ~�ðu;1Þ, ob-
tained with our method with N ¼ 24, are plotted by tri-
angles and squares, respectively, where each point is
obtained from a single realization of the TPQ state. [We
have confirmed again that dependence on the choice of
fcigi is negligibly small.] Not only �ðu;NÞ but also
~�ðu;1Þ depend on N. However, the dependence of
~�ðu;1Þ becomes fairly weak for N * 20, as shown in

the inset. ~�ðu;1Þ for N ¼ 24 agrees well with the exact
result, whereas �ðu;NÞ differs significantly from them for

this value of N. We have thus confirmed that ~�ðu;1Þ is
much closer to �ðu;1Þ than �ðu;NÞ, for finite N. Note,
however, that �ðu;NÞ gives almost correct result for � of a
finite system, as seen from Eq. (12).

We have obtained a series of TPQ states at the discrete
points u0; u1; u2; . . . ; uterm, whose intervals are Oð1=NÞ,
vanishing as N ! 1. For each value of N, Eq. (7) shows
that k gets smaller for smaller l to reach the same u and T,
increasing the intervals and reducing the amount of com-
putation. We have taken l ’ emax in Figs. 1 and 2. In Fig. 3,
we have performed computations with l ¼ emax and 5J,
and both results agree well with each other.

Advantages.—When applied to numerical computation,
our formulation has the following advantages. At finite T,
an exponentially large number of states are included in
EE;N . This makes conventional methods pretty hard. In

contrast, our method takes full advantage of such a huge
number of states, as seen, e.g., in the derivation of Eq. (6).
Moreover, our method is applicable to systems of any
spatial dimensions, and to frustrated or fermion systems
as well. Furthermore, our method costs much less compu-
tational resources than the numerical diagonalization. For

example, the number of non-vanishing elements of Ĥ of
the Heisenberg model is OðN2NÞ. Since k ¼ OðNÞ, the
computational time is OðN22NÞ, which is exponentially
shorter than that of diagonalization. In fact, it took only
two hours to compute all data in Fig. 3 on a personal
computer. Computations can be made even faster by

parallelizing the algorithm, which is quite easy and effi-
cient because our method consists only of matrix multi-
plications. Furthermore, our method is effective over a
wide range of T because the rhs of Eq. (8) is exponentially
small as long as s (and hence T) is finite of Oð1Þ. In fact,
Figs. 1–3 show that our results agree well with the rigorous
results in a wide range of T, from T � J to T � J. In

practical computations with finite N, T ( ¼ 1= ~�ðu	�;1Þ)
can be lowered as long as rkðemin;NÞ=rkðu��;NÞ � 1.
We expect that our method will make it possible to
analyze systems which could not be analyzed with other
methods.
We thank J. Sato, F. Göhmann, C. Trippe and K. Sakai

for numerical data of exact solutions. We also thank H.
Tasaki, A. Sugita, Y. Kato, Y. Oono, H. Katsura, K.
Hukushima and S. Sasa for discussions. This work was
supported by KAKENHI Nos. 22540407 and 23104707.

*sugiura@ASone.c.u-tokyo.ac.jp
†shmz@ASone.c.u-tokyo.ac.jp

[1] S. Popescu, A. J. Short, and A. Winter, Nature Phys. 2, 754
(2006).

[2] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghı̀,
Phys. Rev. Lett. 96, 050403 (2006).

[3] A. Sugita, RIMS Kokyuroku (Kyoto) 1507, 147
(2006).

[4] P. Reimann, Phys. Rev. Lett. 99, 160404 (2007).
[5] Entropy could be obtained if one could obtain a TPQ state

of a huge system which includes the target system.
However, this is harder than calculating the partition
function.

[6] These are the conditions that the Boltzmann formula gives
the correct thermodynamic entropy and that the system is
stable. Hence, they are necessary for all microscopic
models to which statistical mechanics is applied.
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