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A novel hydrodynamic-driven stability analysis is presented for surface patterns on speleothems, i.e.,

secondary sedimentary cave deposits, by coupling fluid dynamics to the geochemistry of calcite

precipitation or dissolution. Falling film theory provides the solution for the flow-field and depth

perturbations, the latter being crucial to triggering patterns known as crenulations. In a wide range of

Reynolds numbers, the model provides the dominant wavelengths and pattern celerities, in fair agreement

with field data. The analysis of the phase velocity of ridges on speleothems has a potential as a proxy of

past film flow rates, thus suggesting a new support for paleoclimate analyses.
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From time immemorial, karst speleothems, such as sta-
lactites, stalagmites, draperies, flowstones, and helictites
[1], have attracted the curiosity of most—scientists and
common people alike—intrigued by the formidable variety
of beautiful patterns, their ubiquity in caves, and the long
time scales involved (103–105 yr). One of the most striking
features of speleothems is the occurrence of morphological
instabilities on the calcite surface at the contact with water.
Speleothems in fact develop surface patterns over a wide
range of Reynolds numbers, R ¼ ~uf ~D=� (~uf being the

water surface velocity, ~D the film depth, � the kinematic
viscosity, and the tilde a reference to dimensional quanti-
ties). The most recognized features are called crenulations,
i.e., ripplelike structures with a subcentimetric wavelength,
~L, that develop at R ¼ Oð10�2Þ during the deposition of
CaCO3 on stalactites from a supersaturated flow [Figs. 1(a)
and 1(b)]. Other dunelike ridges can also arise on lami-
nated deposits on the floor or walls of caves—i.e., flow-
stones—under turbulent sheet flows and perform larger
length scales ( ~L� 10 cm), but crenulations generated
in laminar conditions (at 10�1 <R< 10) and superim-
posed on flowstones are not unlikely to occur [Figs. 1(c)
and 1(d)]. However, the wavelength of all crenulations is
very similar, regardless of the Reynolds numbers. In the
last decade, the analysis of isotope ratios, combined with
high-resolution U230-Th dating techniques, has popular-
ized speleothems even in paleoclimatology [2], where the
task is to reconstruct past temperatures, the CO2 sources,
and (through climate modeling) paleohydrology and
paleorainfalls [3]. However, a morphological proxy of
paleoflows in the cave is still missing.

This study addresses three major questions: Why do
falling films generate crenulations on speleothems? Why
do crenulations exhibit almost constant wavelengths, inde-
pendently of hydrochemical conditions? Is there a potential
for a paleoflow reconstruction based on hydrodynamic-
oriented theory that may complement chemical analyses?
Although calcite precipitation or dissolution geochemistry

is nowadays well-understood [4], and despite the existence
of a physical explanation of the universal laws of stalactites
[5], to date, the mathematical problem of the morphologi-
cal instability of speleothems remains unsolved. Indeed, a
recent attempt to develop a linear stability analysis with a
simplified depth-averaged model failed the prediction of
the crenulation formation [6]. This failure is related to the
subtle role played by the hydrodynamics of the thin water
film which interacts with the surface, carries the solutes by
convection and diffusion, and is the environment of the
chemical reactions. In the following, crenulation instability
is explained by combining a thorough description of geo-
chemistry to a refined free-surface Orr-Sommerfeld-like
model, under laminar conditions (10�3 <R< 10).
Capillary and inertial effects will also be included.
Dynamics of calcareous speleothems involve four

phases [2]: (i) soil activity and limestone dissolution of
epikarst (the aquifer between the cave and the topsoil)
enhance the content of dissolved CO2 and Ca2þ in the
groundwater; (ii) at the contact of the film with the cave’s
atmosphere—which typically has a lower CO2 partial
pressure, pc, than epikarst—a quick degassing makes the
solution supersaturated with respect to calcite and precipi-
tation occurs on stalactites and stalagmites; (iii) water then
flows on the walls and floor of the cave, where precipitation
and calcium depletion continue up to its saturation con-
centration, cs; and (iv) local changes in the external factors,
e.g., temperature (T) or pc, can modify cs and trigger new
precipitation or dissolution processes. Crenulations usually
appear on stalactites in phases (ii)–(iii) and over flowstones
in phase (iv).
According to the scheme of Fig. 1(f), the analysis is

applied to a laminar flow that is bounded by the free
surface (FS), hðx; tÞ, and the precipitation-dissolution cal-
cite interface (PDI), �ðx; tÞ, that is assumed to be locally
flat in the unperturbed state. Wewill neglect 3D effects, but
they may be readily englobed in the present theory.
Following Short et al. [7], a separation of time scales
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between the calcite and hydrodynamics justifies the qua-
sisteady approximation. The variables are made dimen-
sionless using the length and velocity scales of Nusselt’s

velocity profile: ~D ¼ ��1�2=3R1=3 and ~uf ¼ �ð�R2Þ1=3
ðwhere � ¼ ½g sinð�Þ=2�1=3, g is the gravity acceleration,
and � is the tilting; see Fig. 1(f)Þ. The dynamics of the
ternary system H2O-CO2-CaCO3 involve three concentra-
tions, f~c1; ~c2; ~c3g � f½Ca2þ�; ½CO2�; ½HCO3

��g. If the in-

coming calcium concentration, ~c1jx¼0 � C, is used to
provide a dimensionless representation of ~c1 and ~c3 and
~c2 is scaled with its equilibrium concentration at the free
surface,Hpc (H is the Henry’s law constant), the steady-
state vorticity and mass transport equations for 2D incom-
pressible flows [8] read

ðRr̂c � r3 þr4Þc ¼ 0; (1)

ðPir̂c � rþr2Þci þ ri ¼ 0; (2)

respectively, wherer ¼ f@x; @zg, r̂ ¼ f�@z; @xg, c ðx; zÞ is
the stream function, Pi ¼ ~D~uf=Di is the Péclet number,

Di is the diffusion coefficient of ~ci, r1 ¼ 0, r2 ¼ k1c2 �
k2c3, r3 ¼ �r2, and the coefficients ki are functions of
temperature, pH, C, Di, and ~D [9]. The R-dependent term
in (1) accounts for the inertial effects.

The PDI evolution is driven by three rate-limited reac-
tions involving calcite, carbon dioxide, calcium, and
carbonate ions [4], from which Plummer, Wigley, and
Parkhurst [10] derived the so-called PWP equation for

the calcite flux, ~f [mol=m2 s], at the PDI. It has been
justified experimentally and reads

~f ¼ ��1ðHþÞ � �2ðH2CO3
�Þ � �3 þ �4ðCa2þÞ

� ðHCO3
�Þ; (3)

with ðH2CO3
�Þ ¼ ðCO2Þ þ ðH2CO3

0Þ. The round brackets

in (3) refer to activities, according to the Debye-Hückel
theory, ðxÞ ¼ �x � ½x�, where �x is the activity coefficient
that depends on the ionic strength I of the solution [11].

In the range 6<pH< 8, the electroneutrality condition
provides I � 3C [4]. The PWP equation is crucial to deriv-
ing the dispersion relation of the morphodynamic instabil-
ity, but we first need to eliminate some chemical variables.
To this aim, we use (i) the electroneutrality condition,
(ii) the ionic product of water, (iii) the solubility product
of calcite, and (iv) two non-rate-limited reactions involving
½H2CO3

0�, ½CO3
2��, and ~c3 [4]. From (i)–(iv), one obtains

c3 ¼ a1c1 þ a2 and ½Hþ� ¼ a3c
2
1 � a3C2; i.e., pH is taken

here as space-independent, whereas the dimensionless
form of (3) becomes f ¼ �0 þ �1c1 þ �2c2 þ �3c

2
1 [9].

The problem is completed by suitable kinematic, dynamic,
no-slip, and flux conditions written at the boundaries of the
PDI and the FS,

f� �;t ¼ fþ �c1;z ¼ c2;z ¼ c ;x ¼ c ;z ¼ 0; PDI; (4)

c1;z ¼ c2 � 1 ¼ n � r̂c ¼ n � � � �

¼ n � � � nþ RK
W

¼ 0; FS; (5)

where t is time, the comma in the subscript refers to partial
derivatives, � ¼ %C=P1 (% is the molar mass-to-density
ratio of calcite), n and � are the unit normal and tangential
vectors to FS, � is the Newtonian stress tensor,
W ¼ Rð�3=gÞ=l2c is the Weber number, lc is the capillary
length, andK ¼ ½ð1� n:nÞ � r� � n=2 is the FS curvature.
The kinematic evolution equation [i.e., the first equality in
Eq. (4)] plays the same role as the Exner and Stefan
conditions in other morphodynamic problems [12,13].
Let us take advantage of Prandtl’s mapping z ¼ �dþ �,

where d ¼ h� �, so that the PDI is mapped to � ¼ 0 and
the FS to � ¼ 1. We now perturb the generic quantity y
appearing in (1), (2), (4), and (5) according to the ansatz

y ¼ Y þ ŷe	tþi
x (jŷj � jYj, i ¼ ffiffiffiffiffiffiffi�1
p

). After linearizing
around the unperturbed state (capital quantities), the zero
order reads

�0 ¼ 2� � �2; C1 � 1; C2 � 1þ!ð�2 � 1Þk1; (6)
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FIG. 1 (color). (a) Two-dimensional and (b) three-dimensional crenulations on stalactites. (c) Coexistence of ripple- and dunelike
instabilities on flowstones. Crenulations on (d) flowstones and (e) draperies. Picture (a) was taken in Lehman Caves, Utah [14].
Pictures (b)–(e) are from Bossea Cave, Italy, where C� 190 ppm, T ¼ 9 	C, and pc ¼ 103 ppm. (f) Sketch of the physical problem in
dimensionless scales (in this Letter, we assume � ¼ �=2).
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F ¼ �2

2
ð2� k1!Þ þ �0 þ �1 þ �3; (7)

where the prime refers to d=d� and ! ¼
½k2ða1 þ a2Þ=k1� � 1. The left-hand side of (6) is the
Poiseuille law, and nonparallel effects in (6) and (7) have
been neglected at the scale of 2�=
. At the first order, the
hydrodynamic equations provide the steady-state open-
channel version of the Orr-Sommerfeld problem, which
is well-known in hydrodynamic stability theory. At R � 1,
according to lubrication theory, the Orr-Sommerfeld equa-
tion reduces to the biharmonic equation; thus, exact solu-

tions of d̂ and ĉ are easily achievable. Otherwise, the
solutions can be written in terms of the Frobenius series
(further details are in the Supplemental Material). Finally,
the first-order mass transport equations read

ĉ 00
i �½
iþi
Pið2���2Þ�ĉi¼ r̂ið�Þ; (8)

�ĉ01 þ d̂Fþ f̂ ¼ ĉ02 ¼ 0; PDI; ĉ01 ¼ ĉ2 ¼ 0; FS; (9)

where 
i ¼ f
2; 
2 � k1g and r̂i ¼ f0; r̂F ðĉ1; ĉ Þ þ
f̂r̂Gðĉ1Þg [9]. According to the structure of r̂2, we impose

ĉ2 ¼ F ð�Þ þ f̂Gð�Þ, thus obtaining ĉ1ð�Þ and ĉ2ð�Þ from
(8) and (9) in terms of the Frobenius series at P2 < 103 and
by a Chebyshev collocation method at P2 > 103. An ex-

ample of a solution of the (complex) functions fĉ ; ĉ1; ĉ2g is
reported in Fig. 2(a). Notice the large variations of these
functions with respect to � , which precludes any simplified
depth-averaged approach.

By combining (9) with the first-order term of the PWP

equation (	 ¼ f̂), after some algebra, we obtain the dis-
persion relation

	 ¼ Fd̂ð�1 þ 2�3ÞIð0Þ � �2�F ð0Þ
�½�2Gð0Þ � 1� � Ið0Þð�1 þ 2�3Þ ; (10)

where the function Ið�Þ is a solution of (8) for i ¼ 1, after
imposing I 0ð1Þ � 1 ¼ I 0ð0Þ ¼ 0. We recall that Reð	Þ is
the growth rate and c � �Imð	Þ=
 is the phase velocity of
perturbations. Accordingly, unstable [stable] conditions
correspond to Reð	Þ> 0 [Reð	Þ< 0] and downstream
[upstream] migration of individual ripples corresponds to
c > 0 [c < 0].
Figure 2(b) shows the concentration field of an unstable

case (contour plots) and the related calcite flux perturba-
tion (dashed curve). The calcium distribution is distorted
downstream by the Poiseuille flow and high (low) levels of
concentrations of solutes are localized on the ridges
(troughs). This is combined with a slight phase lead with
respect to the bed, thus inducing an upstream-migrating
instability of the PDI perturbation. We note incidentally

that the role of the free-surface perturbation d̂ is crucial in

the above scenario. In fact, if d̂ is forced to be null (that is,
if FS is parallel to PDI), it can be shown that ĉ1 � 0 and the
calcite flux perturbation is therefore dramatically reduced.
The time scale of the pattern growth, ~D=~ufReð	Þ, in fact

changes from Oð1Þ to Oð103Þ years.
By exploiting (10), we are able to find the wave number,


m, which maximizes the growth rate of the perturbations,
i.e., the most unstable one, while spanning different values
of all the parameters, provided that a condition of net
precipitation (F > 0) holds. This analysis is shown in
Fig. 3, where the selected dimensionless wavelength is
shown as a function of the Reynolds number, for different
hydrochemical conditions. Despite a wide variation in the
parameters, the behavior of the selected wavelength is
sensitive to the Reynolds number but almost independent
of changes in the chemical factors (C and pc) and only
weakly sensitive to temperature. In terms of a power law,

FIG. 2 (color). (a) Solution of Eqs. (8) and (9). (b) Spatial
distributions of ĉ1 (color scale) and ĉ2 (white contour lines) in
the physical domain; the dashed line shows the perturbed calcite
flux magnified by a factor of 109. (R ¼ 0:05, 
 ¼ 0:044,
C ¼ 300 ppm, pc ¼ 350 ppm, and T ¼ 15 	C.)

10−2 10−1 100 101
102 103

1

7

10
−3

10
−2

10
−1

10
0

10
1

α

0.1

0.08

0.06

0.04

0.02

0.2

−20

0

−80

−60

−40

β[
]

 

 

10
−2

10
−1

3

5

FIG. 3 (color online). The most unstable wave number in
dimensionless (main figure) and dimensional (inset A) variables
and the slope factor (inset B; see the text). Different combina-
tions of ðT ½	C�; pc ½ppm�Þ are reported in green (8, 350), blue
(15, 350), red (8, 1000), and black (15, 1000) (in grayscale, from
light gray to black). C values are in ppm: solid line, 100; dashed
line, 250; dotted line, 500.
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m � Rn, two regimes can be distinguished: for R< 0:1,
n ¼ 1=6–1=5, depending on the parametric conditions; for

R> 0:1, n ¼ 1=4. Recalling that ~D� R1=3, the dimen-

sional wavelength turns out to be ~L ¼ 2�~h=
m � Rp,
with p ¼ 0:08–0:16. In dimensional terms, the ultimate
R dependence is thus dramatically depleted. This aspect is
shown by Fig. 3, inset A, which shows the dimensional
wavelength of the selected patterns as confined in a very
limited interval (0.2–0.7 cm), despite the five-order mag-
nitude variation in the water unit discharge, q ¼ ~D~uf.

This result is consistent with what is found in nature.
Experimental observations confirm that crenulations tend
to exhibit almost constant wavelengths, regardless of the
boundary conditions (either physical or chemical), a find-
ing that has remained for the most part unexplained so far.
Here, we show that these dynamics are driven by hydro-
dynamical processes and that the typical length scales are
determined by the physics of falling films. For instance,
capillary effects appear to play a crucial role in wavelength
selection. With a gradual decrease in the water surface
tension (i.e., increase in W), the constancy of the wave-
length is broken and a dramatic increase in ~L can be
observed (up to tenfold). Hence, any surfactant in the
groundwater (e.g., from insecticides) is expected to induce
some changes in the patterns. This theory is consistent with
our observations from Bossea Cave, as evidenced by the
size of the crenulations shown in Fig. 1. A further impor-
tant result is that these patterns invariably migrate up-
stream (c < 0) in all our considered cases, with velocities
frommm=yr to cm=yr, a novel finding that further enforces
the similarity between crenulations and icicles.

We now analyze whether the above theory can provide
the basis for a method that infers paleoflows on stalactites
from an analysis of crenulation patterns. The above
results suggest that the use of ~L is not a good candidate
for a successful methodology because of its small R
dependence. Therefore, we consider the quantity � ¼
tan�1ðc=FÞ, which we name slope factor. It is straightfor-
ward to recognize that � is exactly the angle between any
constant-phase point of the wavelet, moving outward
during the deposition process, and the z axis. The slope
factor is reported in the ‘‘stalactite’’ range (10�3 <R<
10�1) in Fig. 3, inset B. This quantity appears to be highly
sensitive to the flow conditions, � varying from �90	 to
�10	 degrees (the negative sign is strictly related to the
already mentioned upstream migration). Accordingly,
Fig. 4 reports a preliminary experimental validation
through the visual inspection of the slope factor imprinted
in two different points of a stalactite specimen of Bossea
Cave. It is worth noticing that wavelength evaluation is a
quite hard task in this case, since the wavelet amplitude is
weak. Nevertheless, the slope factor is easily identifiable
and is negative for both of the points shown in Fig. 4, in
agreement with the theory developed in this Letter.
Furthermore, we are able to test the accuracy of the

flow-rate assessment. From an estimation of the past cross
sections corresponding to two marked points at different
times, and assuming no changes in the total flow rate over
time, we found that the Reynolds number ratio of the two
cross sections is Ra=Rb ¼ b=a ¼ 1:36, where the sub-
scripts indicate the points marked in Figs. 4(a) and 4(b)
and  refers to the diameter of the related cross section.
Considering instead the values of � determined from
Fig. 4, our theory gives Ra ¼ 0:0041 and Rb ¼ 0:0029,
with a ratio equal to 1.41 and a satisfactory error of 3%.
Theoretical models have already shown that stalactites

exhibit shapes that are overall universal [5]. By coupling
hydrodynamical and chemical processes, the approach
presented here explains the universality of the fine-grain
structure of surface patterns, as well, in good agreement
with cave data. Hydrodynamic processes play a crucial role
in determining the wavelength selection of crenulations,
thus providing another example of a free-boundary value
problem involving a morphodynamic instability driven by
a free surface, similar to the cases of sand dunes, ice
ripples, and icicles [12,13]. The slope factor imprinted by
paleoflows on crenulation records is a promising tool in
paleoclimatology, particularly in continental regions,
where the lack of ice and marine records calls for an
improvement and extension of paleoclimatic methods
[2,3]. An expeditious analysis based on paleocrenulation
geometry might direct the location of the cores sampled for
geochemical analyses.
We wish to acknowledge Professor B. Vigna for his

support and assistance in Bossea Cave.
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