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We present a limiting model for thin non-Euclidean elastic rods. Originating from the three-

dimensional (3D) reference metric of the rod, which is determined by its internal material structure,

we derive a 1D reduced rod theory. Specifically, we show how the spontaneous twist and curvature of a rod

emerge from the reference metric derivatives. Thus, the model allows calculating the unconstrained

equilibrium configuration of a thin rod directly from its internal structure. The model is applied to the

study of cells from members of the Geraniaceae plant family and their configurational response to

dehydration. We show how the geometrical arrangement of cellulose fibrils on the cell walls determines

the helical shapes of isolated cells.
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Plant tissues commonly exhibit humidity-induced con-
formational changes that fulfill functional roles, such as the
control of seed dispersal. Examples of such mechanisms
are found in pine cones [1] and in seed pods [2] or awns [3].
In these cases, the plant tissue that is responsible for seed
dispersal is sclerenchymal; the cells have thick walls which
cause a strictly mechanical reaction to stress. Humidity
changes cause the tissue to absorb (expel) water and there-
fore swell (shrink) nonuniformly. Elastic stresses that form
as a result of differential changes in volume may partially
relax via changes in the conformation of the organ.
Mechanical models that explain conformational changes
in sphere- [4], plate- [5], and shell- [6,7] like organs have
been studied, linking the local swelling (shrinkage) of the
tissue to the global shape changes of the organ.

Another common structure in nature is thin rodlike
organs. Rodlike structures in plants include tendrils [8],
awns [3], or even individual cells [9,10]. Such structures
undergo extremely large shape transformations in response
to growth or external stimuli. In [10], for example, it was
demonstrated how a flexible tissue wrapped with an inex-
tensible fiber twists as a response to volume change. More
general mechanical models of rodlike organs have tradi-
tionally focused on obtaining their shape [8] and dynamics
[11], given an intrinsic curvature and an intrinsic twist.
However, no connection has been established between
such intrinsic geometric parameters and the microstructure
of the organs. At present, there is no general theory that
provides links between the three-dimensional (3D) micro-
structure of a rodlike organ, its shrinking (swelling) field,
and the resulting equilibrium configuration.

In this Letter, we use the framework of incompatible
elasticity to derive such a general theory. Specifically, we
provide a recipe whose ingredients are as follows.
(i) Modeling the 3D geometry of elastic rodlike organs

from their microstructure, resulting in a 3D incompatible
elasticity problem. (ii) Deriving from the 3D problem a 1D
dimensionally reduced model. The effective model identi-
fies at every point along the rod an intrinsic curvature and
an intrinsic twist. (iii) Solving the equilibrium configura-
tion of the 1D model to predict the conformation of the
organ.
We apply our scheme to stork’s bill (Erodium gruinum)

and cranesbill (Geranium pusillum) cells, relying on the
architecture of the cellulose fibrils building their walls. We
compare our predictions with the measured shapes of these
cells upon dehydration and find good quantitative
agreement.
Incompatible elasticity.—Mathematically, we model an

elastic body as a three-dimensional manifold, which we
denote by M. The intrinsic geometry of the body is
prescribed in the form of ametric tensor �g. A configuration
is an embedding f: M ! R3 of this manifold into the
physical Euclidean space. Every such embedding induces
onM a metric g. Any discrepancy between g and �g results
in an elastic strain. An energy functional that determines
the energetic cost of such a strain completes the description
of the elastic problem. An equilibrium configuration is a
minimizer of this energy functional.
Dimension reduction.—In order to study a body that is

slender across m dimensions, we introduce a ð3�
mÞ-dimensional submanifold S � M and identify a thin
body of thickness 2r with the subdomain �r of points that
are within a distance r of the submanifold S (where dis-
tances are measured with respect to the intrinsic metric �g).
To each configuration, fr: �r ! R3 corresponds to an
elastic energy Er½fr�.
Under certain conditions, for example, when the body is

unconstrained, the submanifold S can be isometrically
embedded in R3. If S can be isometrically embedded
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without ‘‘sharp bends’’ (a notion that can be made precise),
the leading energy contribution is due to deviations of the
thin surroundings of S from the stretch-free state. The
energy of the equilibrium configuration then scales like
Oðrmþ2Þ and can be identified as a bending contribution.
For this reason, the property of S being isometrically
embeddable in Rn smoothly enough is referred to as a
finite bending property. Note that the existence of a finitely
bent isometry is an intrinsic property of S and its metric
(induced by �g).

Under the assumption that finitely bent isometries of S
in R3 exist, Kupferman and Solomon [12] proved the
following.

(i) The family of equilibrium configurations fr con-
verges to a limit as r ! 0. This limit consists of an embed-
ding F: S ! R3 along with a mapping q of orientations on
S into orientations in R3. The finite bending property
reflects in that q is an orientation-preserving rotation,

namely, q 2 SOð3Þ. Consistency requires that qk ¼ dF,

where qk is the restriction of q to the tangent space of S.
(ii) The limiting configuration ðF;qÞ is the minimizer of

a limiting energy functional Elim, which is the � limit [13]

of the sequence of functionals r�ðmþ2ÞEr. The limiting
functional is

Elim½F;q�¼ YVm

4ðmþ2Þ
Z
S
½jðrqÞ?j2?þ2jðrqÞ?j2k�

ffiffiffiffiffiffiffiffiffi
det �g

p
dx;

(1)

where Y is the material’s Young’s modulus (we assume
here a zero Poisson ratio), Vm is the volume of the
(Euclidean) m-dimensional unit sphere, r is the covariant
derivative on S, and j � j? and j � jk represent the norms of

the projections onto the subspaces perpendicular and tan-
gent to S.

Plates and shells correspond to the case m ¼ 1, i.e., S is
a surface and the limiting configuration F is an isometric
embedding of that surface in three-dimensional space. In
that case, (1) reduces to the expression for the bending
energy of thin shells and plates presented in [2] (with a zero
Poisson ratio).

Rods correspond to the case m ¼ 2. Taking x1 to be the
axis tangent to the longitudinal axis of the rod and x2 and
x3 be axes normal to x1, the limiting configuration F only
determines the unit vector q1 while the choice of normal
directions q2 and q3 remains an additional degree of free-
dom of the limiting configuration. After simple algebraic
manipulations, the limiting energy functional takes the
form

Elim½F;q� ¼ �Y

8

Z
S
½ðq0

2 � q1 � �1
12Þ2 þ ðq0

3 � q1 � �1
13Þ2

þ ðq0
3 � q2 � �2

13Þ2�dx1; (2)

where primes denote derivatives with respect to x1 and �i
jk

are the Christoffel symbols of �g.

One can further simplify this expression by choosing the
axes x2 and x3 such that x2 aligns with the gradient of �g11,
which implies that �1

13 ¼ 1
2@3 �g11 ¼ 0 on S. Recalling that

Elim is the limit as r ! 0 of the elastic energy Er divided by
r4, we can rewrite (2) as

E ¼ Y�r4

8

Z
S
½ð�2 � ��Þ2 þ �2

3 þ ð�� ��Þ2�dx1 þOðr6Þ;
(3)

where

�2 ¼ q0
2 � q1; �3 ¼ q0

3 � q1; � ¼ q0
2 � q3; (4)

and

�� ¼ �1
12 ¼ 1

2@2 �g11; �� ¼ �2
13 ¼ 1

2ð@2 �g13 � @3 �g12Þ; (5)

where the right-hand sides are evaluated on S. Equation (5)
shows how the spontaneous curvature �� and the sponta-
neous twist �� emerge from the 3D intrinsic metric of the
rod. Expression (3) coincides with the classical expressions
for the energy of a rod in the cases of a Euclidean rod
subject to bending and torsion but no stretching (e.g., [14]).
Equilibrium configuration.—In order for the Oðr4Þ en-

ergy contribution in (3) to vanish, the following three
conditions need to hold:

�2 ¼ ��; �3 ¼ 0; � ¼ ��: (6)

Applying (6) and using the fact that q 2 SOð3Þ, we rewrite
(4) as

q1

q2

q3

0
BB@

1
CCA

0

¼
0 �� 0

� �� 0 ��

0 � �� 0

0
BB@

1
CCA

q1

q2

q3

0
BB@

1
CCA: (7)

Under free boundary conditions, Eq. (7) has a unique solu-
tion (modulo solid body transformations), obtained by iden-
tifying q with the Frenet-Serret triad (tangent, normal, and
binormal unit vectors) of a curve whose curvature and
torsion are �� and ��, respectively. Therefore, there is a unique
midcurve configuration whose energy scales likeOðr6Þ, and
it will hence be the limiting configuration for thin rods,
regardless of the exact form of the higher-order terms.
Moreover, the limiting equilibrium configuration can be

directly linked through (5) to the derivatives of the 3D
intrinsic metric. We have therefore obtained a recipe for
calculating the equilibrium configuration of an uncon-
strained thin rod from its intrinsic geometry.
We now make another important observation: In gen-

eral, dimensionally reduced energy functionals emerge
from specific three-dimensional energy functionals and
are therefore model-dependent. On the other hand, the
energy minimizing configuration for non-Euclidean rods
imposes zero strain and zero strain derivatives on the
midcurve. It follows that the equilibrium configuration
found above remains the only Oðr6Þ configuration under
any reasonable elastic model, including Poisson ratio
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effects, nonisotropic elastic moduli, and nonlinear re-
sponse. In this sense, the theory is much more robust for
the case of non-Euclidean rods than it is for the case of
non-Euclidean plates or shells.

Applications.—Stork’s bill (Erodium gruinum) is a small
wild plant from the Geraniaceae family. This family is
characterized by beaklike fruits that break into five dis-
persal units at maturity. Each unit is equipped with a long
thin attachment, the awn, which demonstrates hygroscopic
movement. The awns of the stork’s bill contract and form
helices [Fig. 1(a)]. We showed in [9] that the hygroscopi-
cally active tissue is constructed of long and thin cylindri-
cal cells, with lignified thick secondary cell walls. Each
cell in this tissue spirals spontaneously while it dries, and
adjacent cells interact to spiral cooperatively. The mecha-
nism is based on hygroscopic contraction in a sheared
helical arrangement of the cell wall cellulose microfibrils.
Upon dehydration, the matrix between the microfibrils
undergoes active contraction by some factor � in the
directions normal to the fibrils. Measurements show that
� is monotonic with humidity and typically varies in the
range 1 down to 0.5 [15].

Fibril orientations in the cell wall [Fig. 2(a)] are esti-
mated using small-angle x-ray scattering (SAXS) measure-
ments of the straight (wet) cells (see materials and methods
in [16]). The data indicate that the fibrils form a tilted helix,
and we denote by � the tilt angle and by � the mean fibril
angle [Figs. 2(b) and 2(c)]. These parameters reflect struc-
tural attributes of the cell that are independent of � and
remain fixed during dehydration.

Consider a material element on the cell wall at the
location ðx1; r cos�; r sin�Þ, where r is the radius of the
cell. When dried, this element maintains its length in
the direction c ð�Þ of the fibrils but shrinks by a factor �

in the directions normal to the fibrils. In a local coordinate
system aligned with the fibrils, the reference metric of the
dried cell at the wall is

�glocal ¼
1 0 0

0 �2 0

0 0 �2

0
BB@

1
CCA:

To express this metric in a global Cartesian coordinate
system, we rotate �glocal locally by an angle c ð�Þ about
the x2 axis and then by an angle � about the x1 axis. We
thus get the three-dimensional metric on the cell wall

�gjðx1;r cos�;r sin�Þ ¼ R1ð�ÞR2½c ð�Þ� �glocal
�R�1

2 ½c ð�Þ�R�1
1 ð�Þ; (8)

whereRkðc Þ represents the rotation matrix by an angle c
around the k direction. For notational succinctness, we
denote �gjðx1;r cos�;r sin�Þ ¼ �gðr; �Þ.
We approximate the first derivatives of �g on the mid-

curve by the finite difference of its values at antipodal
points at the wall:

@2 �g � �gðr; 0Þ � �gðr; �Þ
2r

¼ � 1� �2

2r
sin2�

sin2� 0 � cos2�

0 0 0

� cos2� 0 � sin2�

0
BB@

1
CCA;

@3 �g � �gðr; �=2Þ � �gðr; 3�=2Þ
2r

¼ � 1� �2

2r
sin2�

0 1 0

1 0 0

0 0 0

0
BB@

1
CCA:

These expressions need further refinement. It is explicitly
assumed in the derivation of (2) that �g on the midcurve is

FIG. 1 (color online). Thin elastic bodies in stork’s bill. A
(a) wet and (b) dry awn (scale bar—1 cm). (c) Scanning electron
microscopy image of a dry cell taken from the top of the coiling
region of the awn (scale bar—50 �m).

FIG. 2 (color online). (a) At every point on the cell wall, we
define the angle c between the orientation of the fibrils and the
cell’s longitudinal axis. c is approximately independent of the
longitudinal coordinate x1 but may depend on the azimuthal
direction � within the cross section plane. (b) A regular helix, in
which c ð�Þ is constant and equals �. (c) A tilted helix at tilt
angle �, in which c ð�Þ ranges between ð���Þ and ð�þ�Þ,
where � is the mean fibril angle.
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the unit tensor. Averaging �gðr; �Þ over all angles, � shows
that h �g11i ¼ cos2�þ �2sin2�. We thus reparametrize the

x1 axis by a multiplicative factor of
ffiffiffiffiffiffiffiffiffiffih �g11i

p
. By (5), the

intrinsic curvature and torsion of the cell is

�� � �1
2@2 �g11 ¼ cð�; �Þ sin2�;

�� � 1
2ð@2 �g13 � @3 �g12Þ ¼ cð�; �Þð1þ cos2�Þ;

(9)

where

cð�; �Þ ¼ ð1� �2Þ sin2�
4r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�þ �2sin2�

p :

As explained, the equilibrium configuration of the rod is a
curve whose curvature and torsion are �� and ��, respec-
tively. Since �� and �� are independent of x1, the resulting
curve is a helix, characterized by

pitch ¼ 2� ��

��2 þ ��2
¼ �

cð�; �Þ ;

pitch angle ¼ tan�1ð ��= ��Þ ¼ �

2
��:

(10)

Note that we now have two different helical structures: a
tilted helix that describes the microscopic structure of the
cell and a straight helix that describes the cell’s macro-
scopic configuration.

The model predictions are summarized in Fig. 3. For
� ¼ 0, (9) and (10) predict an equilibrium configuration
which is unbent, i.e., a purely twisted rod, as expected from
the azimuthal symmetry of the rod structure. This is in
agreement with our measurements of cranesbill cells
(Table I) and with the results of [17] in the study of spruce

cells. In the moist case, � ¼ 1, all cells fulfill cð�; �Þ ¼ 0
and therefore their curvature and torsion both vanish.
Notice that the pitch angle depends neither on the

shrinkage ratio �, nor on the mean angle of the fibrils �,
nor on the radius of the cell r. This implies that, modulo an
isotropic rescaling, the equilibrium configuration of the
cell depends only on the tilt parameter �. This fact is
demonstrated in Figs. 4(a) and 4(b), where we superimpose
rescaled images of a cell at different stages of drying (see
the method in [16]) onto one another.
In the process of drying, the conformational changes are

entirely due to the decrease in the shrinkage ratio � (from
an initial ‘‘moist’’ value of 1). The structural parameters �,
�, and r are expected to remain constant. To estimate these
parameters from the shape of the cell, we measure the pitch
and the total length of the cell and solve an algebraic
system of equations for � and �, while � can be inferred
directly from the pitch angle using (10). In all measured
cell types, while � decreases by 25%–50% during dehy-
dration, both � and � vary only by a few percents, as
expected from the model.
We use this method to calculate � and � for stork’s bill

cells from the bottom (B) and top (T) inner parts of the
coiling region, as well as for cells from the awn of cranes-
bill (Geranium pusillum). The results are consistent with
the independent SAXS measurements (Table I).
To conclude, we developed a dimensionally reduced 1D

model for thin non-Euclidean elastic rods. In particular, we
derived a recipe for calculating the spontaneous twist and
curvature, as well as the equilibrium configuration, of a
thin elastic rod from its internal 3D structure. This robust
method is applicable to a wide variety of elastic models.
The model was applied to the study of stork’s bill and
cranesbill cells and their configurational response to dehy-
dration. We have quantitatively shown that the recently
discovered helical shape of the dried cells results from the
arrangement of cellulose fibrils in their walls.
The entire awn of the common stork’s bill attains a

coiling configuration when dried. Mechanically, the awn
is nothing more than an aggregate of cells; each follows the
physics of thin rods we described in this Letter. Further
work should therefore be done in order to connect the
collective behavior of the sheaf with the internal geometry
of each single rod.

FIG. 3 (color online). Predicted shapes for different cells with
several values of the cell parameters � and �, for � ¼ 0:5. The
black lines on the sides of each rod represent the �x2 directions
in intrinsic coordinates.

TABLE I. � and � for different cell types, as calculated from
the cell’s conformational changes during dehydration and as
measured by SAXS.

Cell

� �
Shape SAXS Shape SAXS

Stork’s bill (B) 69�ð�5�Þ 	 65� 28�ð�5�Þ� 20�ð�5�Þ
Stork’s bill (T) 82�ð�5�Þ 	 65� 15�ð�5�Þ� 10�ð�5�Þ
Cranesbill 5�ð�8�Þ 
 20� 0�ð�5�Þ� 0�ð�5�Þ
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