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The large scale fluctuations of the ordered state in active matter systems are usually characterized by

studying the ‘‘giant number fluctuations’’ of particles in any finite volume, as compared to the

expectations from the central limit theorem. However, in ordering systems, the fluctuations in density

ordering are often captured through their structure functions deviating from Porod’s law. In this Letter we

study the relationship between giant number fluctuations and structure functions for different models of

active matter as well as other nonequilibrium systems. A unified picture emerges, with different models

falling in four distinct classes depending on the nature of their structure functions. For one class, we show

that experimentalists may find Porod’s law violation, by measuring subleading corrections to the number

fluctuations.

DOI: 10.1103/PhysRevLett.108.238001 PACS numbers: 45.70.Qj, 74.40.Gh

Active matter, collections of interacting self-propelled
particles, are found in many different contexts. Examples
include bird flocks [1], bacterial colonies [2], actin fila-
ments propelled by molecular motors [3], and vibrated
granular rods and disks [4–6]. In these, the ‘‘activity’’
refers to conscious decision making or internally generated
cellular thrusts in the biological systems and impulses from
a vibrating plate for the granular systems. The combination
of activity and interaction can lead to macroscopic order
[7–12]. However, these systems are far from equilibrium
and the usual notions of equilibrium phase transitions
come under unexpected challenges [13,14]. In particular,
macroscopic order and large scale fluctuations reminiscent
of critical equilibrium systems coexist.

Depending on their dynamics and symmetries, different
active matter systems exhibit macroscopic polar, nematic,
and/or density order. Polar ordering has been demonstrated
in point polar particle (PP) models [7,9], experiments with
granular disks [6], and continuum theories [13,14]. For
polar rods (PR), continuum theories rule out macroscopic
polar ordering [15], and experiments on mobile bacteria [2]
and simulations of models of polar rods are in agreement
[11,16]. Apolar rods (AR), or active nematics, have been
studied experimentally [4], in hydrodynamic theories
[14,17], and in simulation [10] and exhibit nematic and
density ordering.

The density fluctuations in the ordered state have
been characterized by the number fluctuations �2

l ¼
hN2i � hNi2 of particles in a finite box of linear size l,
where N is the particle number. In active matter systems,
�2

l � hNi� with �> 1, indicating ‘‘giant’’ number fluctu-

ations (GNF) in comparison to what is expected from the
central limit theorem. The exponent � has been used to
infer the long-range correlations in the system. In two
dimensions, for the PP [6,9,14] and PR [2,11] systems, it

is now known that � ¼ 1:6, and for the AR systems
[4,14,17] � ¼ 2:0.
Consider now an active matter system relaxing to its

ordered state from an initial disordered state. As the den-
sity order grows with time t, there is an increasing macro-
scopic length scale LðtÞ over which there is enhanced
clustering. Information about the spatial structures in
such a coarsening system can be obtained by studying
the spatial density-density correlation function Cðr; tÞ ¼
h�ð0; tÞ�ðr; tÞi, where �ðr; tÞ is the local density at point r.
Systems relaxing to an equilibrium state typically exhibit
clean domain formation [18], resulting in a linear form of
Cðr; tÞ ¼ a� bjrj=LðtÞ for jrj=LðtÞ � 1, known as
Porod’s law [19]. On the other hand, many systems relax-
ing to a nonequilibrium steady state violate Porod’s law
due to a hierarchy of cluster sizes. Examples include
sliding particles on fluctuating interfaces [20] and freely
cooling granular gases [21].
In this Letter, we ask the following. First, we ask

whether coarsening active matter systems obey Porod’s
law. A few studies have addressed this question—discrete
models of active nematics [22] and a recent numerical
implementation of a hydrodynamic polar model [23]
have shown non-Porod behavior. A further systematic
study is necessary, and in this Letter we show that
Porod’s law is indeed violated by all the models that we
study.
Second, we ask whether the fluctuations that contribute

to GNF are the same as those that cause Porod’s law to be
violated. In particular, we ask whether the large distance
behavior of Cðr; tÞ can be deduced by knowing �. In
general, Cðr; tÞ contains more information than �2

l , as the

latter is derived from the former:

�2
l ðtÞ ¼ ld

Z l

0
ddr½Cðr; tÞ � h�i2�; (1)
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where h�i is the mean density. If the integrand decays to
zero over a length scale � � l, then �2

l ðtÞ � ld � hNi
for large l, or � ¼ 1. Since �> 1 for active matter, the
upper limit of Eq. (1) should contribute to the integral,
implying that nontrivial correlations extend beyond the
scale LðtÞ � l. Hence, one would expect the behavior of
Cðr; tÞ near jrj=LðtÞ � 1 to contribute to �2

l ðtÞ in Eq. (1),

but we will see below many interesting exceptions to this.
In this Letter, we show that different active matter systems
as well as other nonequilibrium systems studied in other
contexts, fall into four distinct classes based on the relation
between their �2

l ðtÞ and Cðr; tÞ. In the case of the first type,
the small jrj=LðtÞ � 1 behavior of Cðr; tÞ has no bearing
on the exponent �. For the other three types, it does, albeit
in three distinct ways.

Type 1.—We start with PP systems. We first study nu-
merically the Vicsek model [7], which we denote as PP(1),
in two dimensions. All particles move with constant speed
v0. The positions ri and velocity orientations �i of particle
i at time tþ�t are given by riðtþ �tÞ ¼ riðtÞ þ viðtÞ�t,
and �iðtþ �tÞ ¼ arg½Pk expði�kðtÞÞ� þ��ði; tÞ, where
the summation over k is restricted to those satisfying
jrk � rij< R, and � is white noise over the range
ð��;��. It is known that the system undergoes a transition
from an ordered state to a disordered state as the noise
strength � is increased [7].

We choose parameter values for which the steady
state is polar ordered with no density bands and study
numerically the density structures in the coarsening re-
gime—a typical snapshot of the density clusters in shown
in Fig. 1(a). In the time regime studied, Cðr; tÞ has no
directional anisotropy. Hydrodynamic theory predicts a

length scale LðtÞ � t5=6 [8,14]. Interestingly, we find that
Cðr; tÞ and the corresponding scaled structure function
Sðk; tÞ=L2 [see Fig. 1(b)] show a data collapse for a
completely different coarsening length LðtÞ � t� with
� ¼ 0:25� 0:05. To understand the physical origin of
this length scale, we studied the two eigenvalues �1 and
�2 of the inertia tensor of the largest cluster. Both of these
grow as�t0:5 [see Fig. 1(c)], implying that the radius of the
largest cluster grows as t0:25, determining the length scale
LðtÞ. The Sðk; tÞ [Fig. 1(b)] consists of two distinct power
laws with exponents�1:2 for small kLðtÞ and�2:6� 0:1
for large kLðtÞ; the former has been known in hydrody-
namic theory [8], but we highlight the latter, signifying
violation of Porod’s law. In real space, the latter implies
that Cðr; tÞ has a cusp of the form a� bjr=LðtÞj	1 with
	1 ¼ 0:6� 0:1 for jrj=LðtÞ � 1, and a second power law
jrj�
 with 
 ¼ 0:8� 0:1 for jrj=LðtÞ � 1. Due to this
crossover, the GNF exponent �, determined from Eq. (1),
depends only on the exponent 
:

� ¼ 2� 
=d: (2)

In the coarsening regime, from a direct measurement of
�2

l , we find � ¼ 1:6 [see Fig. 1(d)], consistent with

Eq. (2), and measurements in the steady state [6].

Interestingly, the structure functions in two other polar
models have the same qualitative behavior. A modified
version of the PP(1) model was studied in Ref. [9], which
we refer to as PP(2) model. The rules of the PP(2) model
are the same as those of the PP(1) model except that the
new positions depend on the new velocities: riðtþ�tÞ ¼
riðtÞ þ viðtþ �tÞ�t. Most macroscopic features remain
the same as PP(1), except that the steady state configura-
tions have density bands [9]. In the time regime that we
study, Cðr; tÞ is isotropic and bands do not form. The
structure function is shown in Fig. 1(e)—we find, as in
PP(1), LðtÞ � t0:25 and the small jkjLðtÞ behavior implies

 ¼ 0:8. However, for large jkjLðtÞ, Sðk; tÞ is a distinct
power law with exponent �1:8, implying a ‘‘divergence’’
(as opposed to a cusp) of Cðr; tÞ for small jrj=LðtÞ as
jr=LðtÞj�	2 , with 	2 ¼ 0:2� 0:1—again showing non-
Porod behavior.
Next, we studied a PR model defined in Ref. [11]. The

time evolution of the �i’s in the PR model differs from that
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FIG. 1 (color online). (a)–(d): Simulation results for the PP(1)
model (system size 1024� 1024, � ¼ 1:0, v0 ¼ 0:5, and
� ¼ 0:3). (a) Snapshot of a part of the system at t ¼ 3200
showing the domain structure. (b) Plot of scaled structure
function decays as a power law with exponents �2:6 [large
kLðtÞ] and�1:2 [small kLðtÞ]. (c) The eigenvalues of the inertia
tensor for the largest cluster grow as �t0:5. (d) Variance of
number �2

l � hNi1:6. (e) PP(2) model [parameters same as PP

(1)]: scaled structure function decays as a power law with
exponents �1:8 [large kLðtÞ] and �1:2 [small kLðtÞ]. (f) PR
model (system size 1024� 1024, � ¼ 1:0, v0 ¼ 0:5, and
� ¼ 0:2): scaled structure function decays as a power law
with exponents �1:8 [large kLðtÞ] and �1:2 [small kLðtÞ].
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in the PP(2) model: �iðtþ�tÞ ¼ arg½Pksign½cosð�kðtÞ �
�iðtÞÞ� expði�kðtÞÞ� þ��ði; tÞ and � 2 ð��=2; �=2�.
We find that the scaling of LðtÞ, as well as the shape of
Sðk; tÞ of the PR model, is similar to the PP(2) model
[see Fig. 1(f)].

In summary, the models PP(1), PP(2), and PR share the
following common features. They have a coarsening length
scale LðtÞ � t0:25. At small jrj=LðtÞ, the correlation func-
tions violate Porod’s law either as a cusp or as a power law
divergence. For large jrj=LðtÞ, they exhibit a generic
second power law decay with exponent 
 ¼ 0:8, which
determines the GNF exponent � ¼ 1:6. Thus, for polar
models (type 1), the non-Porod behavior and the GNF
characterize distinct sources of fluctuation.

Type 2.—We study the discrete AR model introduced in
Ref. [10]. The �i’s now evolve as follows. The traceless
two dimensional matrix Qjk ¼ hvjvki � 1

2�jk (with vj

denoting the components of the unit velocity vectors) is
calculated, where the average is done over the particles that

are in the disk of radius R, centered about particle i. If ��
denotes the direction of the largest eigenvector of Q, then

�iðtþ�tÞ ¼ ��þ��ði; tÞ, with � 2 ð��=2; �=2�. The
positions riðtþ �tÞ ¼ riðtÞ � viðtþ �tÞ�t, with the signs
being chosen randomly with equal probability. The steady
state of the AR model is characterized by nematically
ordered bands; however, in the coarsening regime that we
study, they do not arise. Instead, very interesting cell-like
structures—low density zones with high density con-
tours—form [see Fig. 2(a)], whose radii increase with
time. The data forCðr; tÞ and Sðk; tÞ=L2 for different times
collapse when plotted against jrj=LðtÞ or jkjLðtÞ, with
LðtÞ � t0:5 [see Figs. 2(b) and 2(c)]. We make an indepen-
dent estimate of LðtÞ by counting the number of cell-like
zones, thus measuring the mean cell radius RcðtÞ. We
obtain LðtÞ � Rc � t0:5 [see Fig. 2(d)]. For jrj=LðtÞ � 1,
Cðr; tÞ � a� bjr=LðtÞj	1 shows Porod’s law violation
with a cusp singularity 	1 ¼ 0:45� 0:05 determined
from S� kL�2:45 [see Fig. 2(c)]. Unlike the PP models,
there is no second power law regime in Cðr; tÞ for
jrj=LðtÞ 	 1. The above cusp singularity of Cðr; tÞ is
similar to another discrete model of active nematics in
two dimensions (see Fig. 5 of Ref. [22]) and a completely
different model of particles sliding under gravity on a
fluctuating interface in one dimension (see Fig. 2 of
Ref. [20]). Due to the similar functional form of Cðr; tÞ,
the number fluctuation from Eq. (1) is

�2
l � ahNi2 � b

L	1
hNi	1=dþ2 þ 
 
 
 (3)

The leading order behavior �2
l � hNi2 is seen in our data

for the AR model [see Fig. 2(e)], as well as for the sliding
particle system [see Fig. 2(f)]. Thus, the scaling �2

l � hNi2
may arise in systems other than active nematics. Even in an
ordinary density phase segregating system with density
1=2 consisting of domains of equal length LðtÞ, the corre-
lation function is 1� jrj=LðtÞ (satisfying Porod’s law) for

jrj< 2LðtÞ, and the number fluctuation is exactly
�2

l ¼ hNi2 � 4hNi3=LðtÞ � hNi2 for large LðtÞ.
We make two important observations related to Eq. (3).

First, the data in Figs. 2(e) and 2(f) and also in the
experiment of vibrated granular rods [4], show a visible
deviation from the leading �2

l ¼ hNi2 behavior. We

claim that the subleading term in Eq. (3) may account
for this deviation. We confirmed that ��2

l =hNi2þa in-

deed scale as hNi0:23 (consistent with 	1 ¼ 0:45, d ¼ 2)
and hNi0:5 (consistent with 	1 ¼ 0:5, d ¼ 1), respec-
tively, for the data in Figs. 2(e) and 2(f). More remark-
ably, we fitted the published experimental data [4] in this
way (see the Supplementary Material [24]) and con-
cluded that the experimental system has a 	1 � 0:5—
that is, Porod’s law is indeed violated and the exponent
is close to the AR model above. We, thus, suggest that
Eq. (3) opens up a new possibility for experimentalists—
by measuring the subleading corrections to GNF, they
can indirectly measure Porod’s law violation. Second, we
do not see a power law �jkj�2 at small k for SðkÞ [see
Fig. 2(c)], as suggested by continuum theory [17]. The
same is true for the sliding particle model [20], as well
as the clean phase separating system discussed above—
for the latter Sðk; tÞ ¼ 4LðtÞsin2ðkLðtÞ=2Þ=ðkLðtÞÞ2.
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FIG. 2 (color online). (a)–(e) Simulation results for the AR
model (system size 1024� 1024, � ¼ 0:5, v0 ¼ 0:3, and � ¼
0:08). (a) Snapshot of a part of the system at t ¼ 3200 showing
the domain structure. (b) Cðr; tÞ versus r=LðtÞ showing data
collapse. (c) The scaled structure function is a power law with
exponent �2:5 at large kLðtÞ. (d) The mean cell radius RcðtÞ �
LðtÞ. (e) Number fluctuations �2

l � hNi2:0. (f) Sliding particle

model (106 lattice sites, particle density 0.5): �2
l � hNi2:0.
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Instead, these three examples have a divergence �Ld as
k ! 0. This indicates that �2

l � ldSðk ! 0Þ � l2d �
hNi2.

Type 3.—A situation different from type 2 would arise if
Cðr; tÞ has a power law form �jr=LðtÞj�
 over small
through large jr=LðtÞj. On one hand, there will be non-
Porod behavior, and on the other, the same exponent con-
tributes to the GNF exponent � and is given by Eq. (2),
provided 
< d. Although we are not aware of an active
matter system exhibiting such behavior, another nonequi-
librium system, namely a freely cooling granular gas in
one-dimension [21], serves as an example of this type. Its
structure function shows that the jkj space exponent is
�0:8 [21], and hence 
 ¼ 0:2. We revisit this model,
and calculate the �2

l ðtÞ in the coarsening regime. The result

is shown in Fig. 3(a). We find a new GNF exponent value
� ¼ 1:8, consistent with Eq. (2).

Type 4.—Central limit theorem, as in� ¼ 1, may hold in
an interesting situation. This is when dense clusters (with
masses scaling as LðtÞd) appear in isolated locations,
leading to temporal ‘‘intermittency.’’ In this case, Cðr; tÞ ¼
LðtÞd�ðrÞ þ fðjr=LðtÞjÞ. Due to the presence of the
�-function, the form of the scaling function fðjr=LðtÞjÞ
is irrelevant in the calculation of �2

l from Eq. (1). Thus,

� ¼ 1. Such situations arise in aggregation models, diffu-
sive or ballistic, wherein particles aggregate on contact
conserving mass. The density-density correlation function
for the ballistic system has been studied in molecular
dynamics and also for an equivalent lattice model [25].
For jr=LðtÞj> 0, the scaling form of the correlation func-
tion starts from a low value, rises linearly and then satu-
rates, with increasing jr=LðtÞj. While Porod’s law holds,
Cðr; tÞ also has a term LðtÞ�ðrÞ. We measure �2

l in simu-

lations of the lattice version of the model, and clearly see
� ¼ 1 as predicted [see Fig. 3(b)]. We note that type 4 is
distinct from the other types in another respect: hNki /
hNi, for all integer k � 2, a consequence of statistics being
dominated by the largest cluster. We check that this is true
for ballistic aggregation. For all other cases (types 1–3)
hNki / hNi�k, where the exponent � is specific to a system.

In summary, we studied well known discrete models of
active matter and some other nonequilibrium systems, to
understand similarities and differences in their density

structures. All the active matter systems that we studied
were shown to violate Porod’s law, and the non-Porod
behavior is quantified by various new exponents. We cate-
gorized the relationship between spatial density-density
correlation function and giant number fluctuation into
four types. Unlike the classification of active matter sys-
tems based on microscopic symmetries (nematic, polar,
etc.), our classification scheme is based on the shapes of
the measured or calculated spatial density-density correla-
tion functions during coarsening. The scheme is based on
simple features in the shape, like presence or absence of a
� function at r ¼ 0 (type 4), a power law divergence as
r=LðtÞ ! 0 (type 3), a finite approach as r=LðtÞ ! 0 with
a single-piece (type 2) or a two-piecewise (type 1) decay.
Even if the scaled correlator has more than two-piece
decay, then also as in type-1, the non-Porod exponent
and number fluctuation exponent would be unrelated. In
addition to active matter systems, we also bring some other
nonequilibrium systems within the ambit of our classifica-
tion. Among active matter systems, we show that polar
particles and rods are of type 1, while apolar rods are of
type 2. For polar systems, we identify a new coarsening
length scale LðtÞ � t0:25. For apolar systems, we showed
that the subleading corrections to the number fluctuations
may help experimentalists to detect Porod’s law violation.
We demonstrate this by analyzing published data from the
literature. We argue that the known discrete models be-
longing to type 2 exhibit GNF for a different reason than
proposed by continuum theory of active nematics. We hope
that this study will encourage experimentalists to probe
density structures in detail in the future.
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