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We study numerically and analytically a model of self-propelled polar disks on a substrate in two

dimensions. The particles interact via isotropic repulsive forces and are subject to rotational noise, but

there is no aligning interaction. As a result, the system does not exhibit an ordered state. The isotropic

fluid phase separates well below close packing and exhibits the large number fluctuations and clustering

found ubiquitously in active systems. Our work shows that this behavior is a generic property of systems

that are driven out of equilibrium locally, as for instance by self-propulsion.
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Collections of self-propelled (SP) particles have been
studied extensively as the simplest model for ‘‘active
materials,’’ a novel class of nonequilibrium systems com-
posed of interacting units that individually consume energy
and collectively generate motion or mechanical stresses
[1]. Active systems span an enormous range of length
scales, from the cell cytoskeleton [2] to bacterial colonies
[3], tissues [4], and animal groups [5]. These disparate
systems exhibit common mesoscopic to large-scale phe-
nomena, including swarming, nonequilibrium disorder-
order transitions, pattern formation, anomalous fluctua-
tions, and surprising mechanical properties [6,7].

Active particles are generally elongated and can order in
states with either polar or apolar (nematic) orientational
order. A remarkable property of such ordered states is giant
number fluctuations. In equilibrium systems, away from
continuous phase transitions, the standard deviation �N in

the mean number of particles N scales as
ffiffiffiffi
N

p
for N ! 1.

In active systems, �N can become very large and scale as
Na, with a an exponent predicted to be as large as 1 in two
dimensions [7–9]. This theoretical prediction has been
demonstrated experimentally [10–12] and verified in simu-
lations of agent-based models [13–15]. Both nematic and
polar states exhibit giant number fluctuations, which are
believed to be associated with the broken orientational
symmetry.

In this Letter, we study a model of SP soft repulsive
disks with no alignment rule. Since the particles are disks,
steric effects, although included in the model, do not yield
large-scale alignment, in contrast to SP rods that can order
in nematic states [16,17]. As a result, our particles,
although self-propelled, do not order in a moving state at
any density. Figure 1 shows, however, that above a packing
fraction�c � 0:4 this minimal system phase separates into
solidlike and gas phases, hence exhibiting giant number
fluctuations for �>�c (Fig. 2). While the giant fluctua-
tions seen in the ordered state of nematic and polar active
systems [10,13,14] are believed to be intimately related to
the broken orientational symmetry, the ones seen here arise

in the absence of any broken symmetry when the rate at
which self-propulsion is suppressed due to steric trapping
exceeds the rate of density convection, resulting in phase
separation. Clustering in our system occurs via a mecha-
nism similar to that discussed in Ref. [18] for bacteria with
run-and-tumble in one dimension, but distinct from those
proposed in Ref. [7,9] that require the existence of orienta-
tional order and therefore cannot explain our results.
Similar clustering has been seen in spherical vibrated

FIG. 1 (color online). Snapshots of NT ¼ 104 disks for
� ¼ 0:39 (top row) and � ¼ 0:7 (bottom row). Same-size
clusters, defined by particles overlap, are highlighted by color
coding. The left frames are for a thermal system at kBT ¼ 0:1. The
right frames are for SP disks with v0 ¼ 1 and �r ¼ 5� 10�3.
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granular particles, although there inelasticity of the inter-
action may play a role [19,20]. Our work supports the
suggestion by Cates and collaborators [18,21,22] that clus-
tering and phase separation are generic properties of sys-
tems that are driven out of equilibrium by a persistent local
energy input that breaks detailed balance. We further show
that the notion of effective temperature cannot be used to
describe the system. Finally, using input from the nu-
merics, we construct a continuum model that reproduces
the results of the simulations.

Numerical model.—We restrict ourselves to systems
without momentum conservation, such as granular materi-
als or living organisms on a substrate. The particles are soft
repulsive disks of radius a with a polarity defined by an
axis �̂i ¼ ðcos�i; sin�iÞ, where i labels the particles. The
dynamics is governed by the equations

@tri ¼ v0�̂i þ�
X
j�i

Fij þ �T
i ðtÞ; @t�i ¼ �iðtÞ; (1)

with v0 the self-propulsion speed and � the mobility.
The translational and rotational noise terms, �T

i ðtÞ and
�iðtÞ, are Gaussian and white, with zero mean and corre-
lations h�T

i�ðtÞ�T
j�ðt0Þi ¼ 2D�ij����ðt� t0Þ (the Greek

labels denote Cartesian coordinates) and h�iðtÞ�jðt0Þi ¼
2�r�ij�ðt� t0Þ, with D ¼ kBT� the Brownian diffusion

coefficient and �r the rotational diffusion rate. For
Brownian particles of size a, D� a2�r at low density.
Here, however, we treat D and �r as independent noise
strengths, with D controlled by thermal noise and �r a
measure of nonequilibrium angular noise as it may arise,
for instance, from tumble dynamics of swimming organ-
isms [23]. In the numerical work described below we
neglect the translational noise to highlight the crucial
role of the angular noise. The force Fij between disks i

and j is short-ranged and repulsive: Fij ¼ �kð2a� rijÞr̂ij

if rij < 2a and Fij ¼ 0 otherwise. Although the self-

propulsion speed v0 is fixed, the instantaneous speed of
each particle is determined by the forces due to the
neighbors, in contrast to Vicsek-type models (but see
Refs. [24–27]). We have performed molecular dynamics
simulations of Eq. (1) at T ¼ 0 with NT ¼ 100–10000
particles and periodic boundary conditions in a box of
size L. We explore the phase diagram by varying the
self-propulsion speed v0 and the packing fraction
� ¼ NT	a

2=L2. In the numerics, we have scaled lengths
with the radius a of the disks and times with 10=ð�kÞ and
have fixed the rotational noise strength �r ¼ 5� 10�3.
Athermal phase separation.—A hallmark property of SP

particles is strong clustering in the absence of attractive
interactions. This is ubiquitous in the ordered state of
Vicsek-type models and has been seen even in the absence
of polar aligning rules in simulations of SP hard rods
[28–30]. In this case, the anisotropic shape of the particles
provides an aligning although apolar interaction that en-
hances cluster formation. Our model, in contrast, consists
of radially symmetric particles, and no alignment can arise
from steric effects. Nonetheless, we observe strong athe-
rmal clustering due solely to the nonequilibrium nature of
the SP disks. Above a critical packing fraction �c � 0:4,
the system separates into dense macroscopic clusters and a
low-density phase. Even below �c, clustering is much
more pronounced than in a thermal system, as illustrated
on Fig. 1 for packing fractions below (top) and above
(bottom) �c. The frames to the right are snapshots of the
SP disks model. The left frames show snapshots of an
‘‘equivalent thermal system’’, defined as one with compa-
rable overlap between particles, at the same packing frac-
tions. In dimensionless units, the typical overlap � in the
active case is obtained by balancing the active force v0=�
with the repulsive force k�, with � ¼ 0:1 for v0 ¼ 1. The
equivalent thermal system is then obtained by setting
kBT ¼ k�2 ¼ 0:1. This comparison indicates that the
SP system cannot be simply described by an effective
temperature, in agreement with [31], and in contrast to
what has been argued by some authors [32,33]. The inade-
quacy of the notion of effective temperature is also sup-
ported by an analysis of the cluster size probability
distribution (not shown). The notion of effective tempera-
ture may at best hold in very dilute systems. To see this, we
formally integrate the angular dynamics and rewrite Eq. (1)
solely in terms of translational dynamics as

@tri ¼ �
X
j�i

Fij þ �iðtÞ; (2)

where the noise �iðtÞ has zero mean and variance

h
i�ðtÞ
j�ðt0Þi�0 ¼2

�
D�ðt� t0Þþv2

0

4
e��rjt�t0j

�
����ij (3)

where h. . .i�0 includes an average over the initial values of

the angles. This shows that the two expressions of Eq. (1)
are equivalent to Eq. (2), that describes interacting soft

FIG. 2 (color online). Standard deviation�N versus the average

number N of particles in a subsystem of size ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	a2N=�

p
for

packing fractions � from 0.1 to 0.8, NT ¼ 104, and 1 � N � NT .
The dashed and dotted lines correspond to �N ¼ N1=2 and
�N ¼ N, respectively. Inset: exponent a such that �N � Na

versus � for NT from 200 to 104.
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disks, with non-Markovian noise with memory
time ��1

r . This noise can be approximated as white,
with h
i�ðtÞ
i�ðt0Þi�0 ¼2�kBðTþTeÞ�ðt� t0Þ����ij and

kBTe ¼ v2
0

2�r�
, only for jt� t0j � 1=�r. The effective tem-

perature description will be adequate only in the very dilute
gas phase, when ��1

r is shorter than the mean free time.
In dimensionless units, this requires �<	�2

r=v
2
0. The

parameter values used in Fig. 1 give 	�2
r=v

2
0 ’ 10�4 and

kBTe ¼ 100, i.e., essentially zero density and infinite
temperature.

Giant number fluctuations and orientational correla-
tions.—In the phase-separated regime for �>�c, we ob-
serve giant number fluctuations: as shown in Fig. 2, the
variance �N of the fluctuations in the number of particles
in a subregion of size ‘2, containing a total mean number of
particles N, scales as �N � Na, with a ¼ 0:95� 0:05.
This exponent is consistent with value a ¼ 1 expected
for phase separation in 2d. Orientational correlations decay
exponentially in both phases, and the large cluster is sta-
tionary, confirming the absence of large-scale orientational
order. Residual correlations exist at the surface of large
clusters, where particles tend to point inward. Particles
mainly enter or leave the cluster individually or in pairs.
These observations demonstrate that orientational correla-
tions, to be discussed in a future publication, do not play
the central role in controlling phase separation.

Mean-square displacement.—To further characterize
the dynamics, we have evaluated the mean-square
displacement (MSD) of a tagged disk, shown in Fig. 3.
An individual SP particle described by Eq. (2) with
Fij ¼ 0 performs a persistent random walk (PRW), with

h½�rðtÞ�2i ¼ 4D0½tþ 1
�r
ðe��rt � 1Þ�, with D0 ¼ v2

0

2�r
and a

crossover from ballistic behavior with h½�rðtÞ�2i � v2
0t

2

for t 	 ��1
r to diffusive behavior, with h½�rðtÞ�2i � 4D0t

at long times [34]. The PRW form fits the data at vanish-
ingly small packing fraction. At nonzero density the
MSD displacement can still be fitted by a PRW form,

h½�rðtÞ�2i ¼ 4De½tþ 1
�e
r
ðe��e

rt � 1Þ�, with De ¼ v2
e

2�e
r
and

�e
r , ve density-dependent fitting parameters. The bottom

inset of Fig. 3 shows the effective self-propulsion speed
veð�Þ obtained from the fits as a function of density. For
�<�c, veð�Þ is well fitted by a linear form veð�Þ ¼
v0ð1� ��Þ, with � � 0:9 independent of v0 for the three
simulated values (v0 ¼ 0:5, 1, and 2). In contrast, �e

r � �r

depends weakly on density. As a result, Deð�Þ �D0

ð1� ��Þ2, as shown in the top inset of Fig. 3. Above �c,
the MSD is slower than ballistic at short times. In spite of
this, the PRW form with a linear decrease of ve with� still
fits surprisingly well. This may be due to the fact that above
�c a large fraction of disks belongs to stationary clusters
and the MSD is controlled by particles in the low-density
regions. All densities shown here are below the crystalli-
zation density �0 � 0:91, above which a bounded MSD is
expected [31]. As pointed out in Ref. [21], Deð�Þ repre-
sents a collective diffusivity renormalized by interactions.
This quantity was calculated in Ref. [18] by a statistical
analysis of run-and-tumble dynamics in one dimension,
where an exponential decay of ve with density was
obtained. The linear decrease of ve with density found in
our model is consistent with the predictions of Ref. [18] for
weak interaction strength. The resulting suppression of
diffusion is the mechanism responsible for phase separa-
tion and cluster formation.
Continuum model.—We now use the findings from our

simulations to construct an empirical continuum model
that captures the dynamics of the system. The analysis of
the MSD indicates that one of the effects of steric repulsion
is the replacement of v0 in Eq. (1) by veð�Þ. After this
replacement, we use standard methods [35,36] to coarse-
grain the microscopic dynamics and derive continuum
equations for the conserved density �ðr; tÞ of active parti-
cles and the polarization density pðr; tÞ ¼ �ðr; tÞPðr; tÞ,
with P the orientational order parameter. Although our
system does not order, the noisy angular dynamics of
Eq. (1), described in the continuum by the coupling to P,
is crucial in controlling the behavior of the system. A
minimal version of the hydrodynamics of overdamped SP
particles [8] that neglects all convective nonlinearities but
is adequate for our purpose is given by [37,38]

@t� ¼ �r 
 ðvep�D�r�þ f�Þ; (4a)

@tp ¼ ��rp� 1
2rðve�Þ þ Kr2pþ fp; (4b)

where f� and fp represent Gaussian white noise with zero

mean and correlations hf�iðr; tÞf�jðr0; t0Þi ¼ 2���ij�

ðr� r0Þ�ðt� t0Þ and hfpiðr;tÞfpjðr0;t0Þi¼2��ij�ðr�r0Þ�
�ðt�t0Þ. The density equation is simply a convection-
diffusion equation, with advection velocity given by the

FIG. 3 (color online). Mean-square displacement of a tagged
disk versus time for various packing fractions �, showing cross-
over from ballistic to diffusive behavior. Insets: effective
diffusion constant Deð�Þ=D0 and self-propulsion speed
veð�Þ=v0 obtained from the fit to the data as functions of �
for bare SP velocity v0 ¼ 0:5, 1, 2 (diamonds, circles, and
squares, respectively).
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local self-propulsion speed. We include a finite value for
the density diffusion D� because even in the absence of

translational noise in the microscopic dynamics, density
diffusion (and polarization diffusion K) would be induced
in the system through interactions. The polarization decays
at rate �r and is convected by pressurelike gradients
�rðve�Þ. The only homogeneous stationary state de-
scribed by Eqs. (4a) and (4b) is the isotropic state with
� ¼ �0 and p ¼ 0. To examine the stability of this state,
we consider the dynamics of fluctuations �� ¼ �� �0

and �p. Introducing Fourier amplitudes ð��q;!;�q;!Þ ¼R
r e

�iq
r R
t e

�i!tð��ðr; tÞ;r 
 pðr; tÞÞ, the linearized equa-

tions take the form

½i!þD�q
2���q;! ¼ �ve�q;! � iq 
 f�q;!; (5a)

½i!þ �r þ Kq2��q;! ¼ wq2��q;! þ iq 
 fpq;!; (5b)

where 2w ¼ veð�0Þ þ �0v
0
eð�0Þ. Since v0

eð�0Þ � ðdve

d� Þ�0
<

0, w can change sign, signaling self-trapping. The disper-
sion relations of the linear modes are easily calculated. At
small wave vector, the dynamics is controlled by a diffu-
sive mode !�ðqÞ ’ iDq2, with D ¼ D� þ vew=�r an

effective diffusivity. If w> 0, convective currents associ-
ated with self-propulsion exceed self-trapping responsible
for the decrease of ve. Then D> 0 and the isotropic state
is stable. Whenw< 0, the effective diffusivityD becomes
negative for vejwj> �rD�, signaling unstable growth of

density fluctuations and phase separation. Using the linear
fit for veð�Þ from the numerics, we estimate that w
changes sign at �� ¼ 1=ð2�Þ. If we neglect thermal diffu-
sion (D� ¼ 0), the isotropic state is unstable for all packing

fractions �>�� � 0:45 that we identify with �c � 0:4
found in the numerics. A finite value of D� shifts the

instability boundary to higher density.
Static structure factor.—The continuum model can also

be used to evaluate the static structure factor SðqÞ ¼ 1
N �

h��qðtÞ���qð�tÞi, which is a direct measure of the spatial

correlations of density fluctuations, with Sðq ! 0Þ ¼ ð�NÞ2
N .

We evaluate SðqÞ in the region w> 0 by computing the
dynamical structure factor Sðq; !Þ ¼ 1

N hj��q;!j2i from the

linearized equations for the fluctuations with noise. Then,
SðqÞ ¼ R1

�1
d!
2	 Sðq; !Þ. The noise in the density equation

does not contribute at small wave vectors, and we obtain

SðqÞ ¼ v2
e�0�

½�r þ ðD� þ KÞq2�½�rDþD�Kq
2� ; (6)

with Sð0Þ ¼ v2
e�0�
�2
rD

. As the instability is approached from

below D ! 0 and Sð0Þ diverges, with a behavior that
reminds of that at an equilibrium critical point. The decay

of correlations is characterized by a length scale 
 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KD�=ð�rDÞ

q
� ð���cÞ�1=2 that diverges at the insta-

bility. The static structure factor obtained from simulations
is shown in Fig. 4. For�>�c, SðqÞ diverges at small q and

is reasonably well described by SðqÞ�q�� with ��2,
consistent with what is expected for a phase-separated
system. Below the transition (�<�c), we fit SðqÞ at low
q to a Lorentzian SðqÞ ¼ S0=ð1þ q2
2Þ. The inset of
Fig. 4 shows a good collapse of the rescaled structure factor
~Sð~qÞ ¼ ~S ¼ S=S0, with ~q ¼ q
 and S0 and 
 obtained from
the fits. The growth of the correlation length 
 is not incon-
sistent with a divergence at the transition, but a detailed
study of the transition region is needed to determine scaling
exponents.
In summary, we have shown that self-propelled particles

with no alignment exhibit an athermal clustering instability
to a phase-separated regime well below close packing.
Above the instability, the system exhibits large density
fluctuations. The origin of this instability is distinct from
those previously proposed [7,9]. In particular, it does not
require the system to exhibit polar or nematic order but
rather arises as a general property of active systems.
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Raynaud, Eur. Phys. J. B 64, 451 (2008).

[15] F. Peruani, F. Ginelli, M. Bär, and H. Chaté, J. Phys. Conf.
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Lett. 104, 184502 (2010).
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