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We describe a method for creating a three-dimensional analogue to Rashba spin-orbit coupling in

systems of ultracold atoms. This laser induced coupling uses Raman transitions to link four internal

atomic states with a tetrahedral geometry, and gives rise to a Dirac point that is robust against

environmental perturbations. We present an exact result showing that such a spin-orbit coupling in a

fermionic system always gives rise to a molecular bound state.
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Recent experiments with synthetic gauge fields open the
door to explore spin-orbit coupling and non-Abelian gauge
fields in atomic systems [1–10]. Non-Abelian gauge fields
provide rich ground state physics in bosonic systems
[11–13], and enhance bound state formation in attractive
fermion systems [14–17]. However, apart from engineering
cold-atom analogues to known Hamiltonians, with suitable
choices of laser fields, cold atoms can be made to behave in
ways that have no known analogue in solid state systems [18].

In this Letter, we propose a method for synthesizing a 3D
extension to Rashba spin-orbit coupling for ultracold atoms
which we call Weyl spin-orbit coupling in analogy to Weyl
fermions [19]. The resulting rotationally symmetric disper-
sion has an infinite ground state degeneracy which covers a
sphere, analogous to the Rashba Hamiltonian’s circular
ground state.

We examine the consequences of such three-dimensional
spin-orbit couplings: for example, the spectrum for the
spherical case has a protected Dirac point that cannot be
removed by any homogeneous Zeeman field. Finally, we
consider the addition of interactions and exactly show that
the 3D spin-orbit coupling (3DSOC) strongly enhances the
binding energy of two fermions.

We produce the 3DSOC with a 4-level atom with states
j1i, j2i, j3i, and j4i optically coupled with a Hamiltonian

Hal ¼
X
jk

�jkjjihkj; (1)

with�jk¼�ðjkÞexp½iðkjk �rþ�jkÞ� as shown in Fig. 1(a).
Here kjk ¼ Kj �Kk is the momentum transferred by the

laser, �jk is the phase of the coupling, the coupling

strength �ðjkÞ is chosen to be �ð1Þ for k ¼ jþ 1, �ð2Þ for
k ¼ jþ 2, and the indexes are taken modulo 4. This cou-
pling connects the states in a loop topology [20], with
additional next-nearest-neighbor couplings, denoted by

�ð2Þ. In the maximally symmetric case of �ð1Þ ¼ �ð2Þ,
this coupling is geometrically equivalent to a tetrahedron.
We choose the momentum vectors

K j ¼ �?ðex cos�j � ey sin�jÞ � �kð�1Þjez: (2)

For the remainder of the Letter we will assume the maxi-
mally symmetric case with kk ¼ k?. The vectors Kj point

from the center to the vertices of a tetrahedron [Fig. 1(b)].
The spatial dependence in the phase term can be elim-

inated by a state dependent boost jji ! eiKj�rjji. In the

FIG. 1 (color online). Optical configuration for the 3DSOC.
(a) Four states are coupled using two-photon optical transitions.
(b) The momentum-space displacement vectors Ki point to the
four vertices of a tetrahedron. (c) The fluxes through the surface
are chosen to be �i ¼ �=2 modulo 2�.
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boosted basis, the full Hamiltonian is

H ¼ X
j

ðp�KjÞ2
2m

jjihjj þHal; (3)

with atom-laser coupling

Hal ¼ �ð1Þ X4
j¼1

ðei�j;jþ1 jjþ 1ihjj þ H:c:Þ (4)

þ�ð2Þ X2
j¼1

ei�j;jþ2ðjjþ 2ihjj þ H:c:Þ: (5)

The six phases �jk are not independent. Only the fluxes

through the effective surfaces of the tetrahedral coupling

�i ¼
X
k�i

�k;kþ1 (6)

are relevant. We choose these fluxes such that �i ¼ �=2
modulo 2�; the sum

P
4
i¼1 �i ¼ 0, so of the six �jk, only

three are necessary to parametrize the system. We use the
additional freedom in the choice of phase to elucidate a
symmetry of the problem; in what follows, we chose
�j;jþ1 ¼ �=4, and �j;jþ2 ¼ ðj� 1Þ� without loss of gen-

erality. The form of the effective Hamiltonian will be the
same with any choice of phases for which the fluxes
through each surface satisfy �i ¼ �=2mod2�.

We diagonalize the atom-laser Hamiltonian through a
two step process. With the above choice of phases, the
atom-laser Hamiltonian has a symmetry under the trans-
formation jji ! jjþ 2i. This additional symmetry allows
us to dimerize states coupled by the next-nearest-neighbor

couplings, �ð2Þ with the transformation ja�i ¼ 1ffiffi
2

p ðj1i �
j3iÞ and jb�i¼ 1ffiffi

2
p ðj2i�j4iÞ. In the dimer basis, the atom-

laser Hamiltonian is

~Hal ¼
�ð2Þ ffiffiffi

2
p

�ð1Þ 0 0ffiffiffi
2

p
�ð1Þ ��ð2Þ 0 0

0 0 �ð2Þ �i
ffiffiffi
2

p
�ð1Þ

0 0 i
ffiffiffi
2

p
�ð1Þ ��ð2Þ

0
BBBBB@

1
CCCCCA (7)

with respect to the basis fjaþi; jbþi; jb�i; ja�ig. The sub-
sequent unitary transformation U independently diagonal-
izes the two blocks, which have the same spectrum,

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½�ð1Þ�2 þ ½�ð2Þ�2

q
. The twofold degenerate

ground states comprise our pseudospin for the spin-orbit
coupling.

The spin-orbit coupling arises from projecting
P

jq �
Kjjjihjj into the low energy subspace to give q �A, where

the 3D vector potential

A ¼ cos�
�?
2

ð�xex þ �yeyÞ þ sin��k�zez (8)

nontrivially includes all three components of the Pauli

matrices ð�x;�y;�zÞ¼�. By changing tan�¼�ð2Þ=2�ð1Þ

and �?=�k, the vector potential can give both symmetric

and asymmetric spin-orbit couplings. The 3DSOC is fully

isotropic when �?=�k ¼ �ð2Þ=2�ð1Þ, with a Hamiltonian

H0 ¼ p2

2m
þ v� � p: (9)

The spin-orbit coupling is characterized by the velocity
v ¼ �eff=m, where �eff ¼ �? cosð2�Þ=2.
The 3DSOC can be implemented in 87Rb using two-

photon transitions. A possible implementation is given in
Fig. 2. Nine laser beams with wavelength � are used to
couple states within the F ¼ 1 and F ¼ 2 hyperfine mani-
folds. A Zeeman field of B ¼ 200 mT sets the quantization

FIG. 2 (color online). Four hyperfine states jF;mFi of 87Rb are
coupled using nine lasers. The quantization axis is set by a
Zeeman field along the ẑ axis. The couplings are produced in
pairs. (a) The four states in the tetrahedral coupling are mapped
to physical states according to j1i ¼ j2; 0i, j2i ¼ j1;þ1i, j3i ¼
j1; 0i, j1i ¼ j2;þ1i. (b) The frequencies of the three sets of
lasers are given by f!a;!a þ �12; !a þ �34g (dashed blue),
f!b;!b þ �13; !b þ �24g (dotted black), and f!c;!c þ
�14; !c þ �23g (solid red), where �ij ¼ !i �!j is the fre-

quency difference between the states jii and jji in the rotating
frame. (c) The geometry of the nine laser beams. �k12 ¼
�k13 ¼ k23 ¼ k34 ¼ kLê�, ka ¼ k23 ¼ �k14 ¼ kLẑ and
kb ¼ �kc ¼ kLê�. The unit vectors ê� ¼ � 1ffiffi

2
p ðx̂� ŷÞ. For a

complete description of the laser parameters, see the
Supplemental Material [21].
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axis along the ẑ direction. The remaining hyperfine tran-
sitions are isolated with a 6.8 GHz microwave field. Each
pair of nonadjacent couplings is induced with three laser
beams. For example, the optical couplings�12 and�34 are
produced using the beams La, L12, and L34. These beams
have the respective frequencies !a, !a þ!1 �!2 and
!a þ!3 �!4, and corresponding polarization vectors
	a ¼ 1ffiffi

2
p ðx̂� ŷÞ, 	12 ¼ 	34 ¼ ẑ. This pattern will ensure

the system does not undergo unwanted optical transitions.
The remaining four optical couplings are shown in Fig. 2.
For complete details see the Supplemental Material [21].

The spectrum of Eq. (9) is given by

EðpÞ ¼ p2

2m
� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þ p2
z

q
; (10)

and is shown in Fig. 3. At p ¼ 0, the system has a protected
three-dimensional Dirac point. Since the spin-orbit cou-
pling includes all spin matrices, no uniform Zeeman field
can induce a splitting at the Dirac point. This is true even
for anisotropic couplings, provided that the nature of the
3D spin-orbit term is preserved.

The spectrum has a ground state manifold on a sphere
jpj ¼ mv. The dispersion is parabolic only along the radial
direction, and excitations are energetically free along
the polar and azimuthal directions. This suggests that a
3DSOC will behave as a quasi-one-dimensional system
with respect to fluctuations around the ground state. This
will be manifest in the presence of a spherically symmetric
trapping potential. Provided the spin-orbit energy is suffi-
ciently strong, the low energy spectrum will be defined by
a single radial quantum number, and will be degenerate in
the angular quantum numbers [22].
Similarly, two free fermions with spin-orbit coupling

will have a binding energy that is enhanced. It is well
known that in one and two dimensions, an arbitrarily
weak, attractive, potential has a bound state, whereas no
bound state is guaranteed to exist in three dimensions [23].
Furthermore, the binding energy in a 1D system is alge-
braic in the potential, while in a 2D system the binding
energy is exponentially small. It was noticed [24,25], and
recently rediscovered [14–16], that Rashba fermions have
an enhanced tendency for molecular formation. This can be
understood in a manner similar to the formation of Cooper
pairs, where the enhancement of the density of states near
the Fermi surface reduces the effective dimension of the
system from three to two.
The situation is analogous for 3DSOC fermions, where

the energetically free excitations along the polar and azi-
muthal direction enhances the density of states, and effec-
tively reduces the bound state problem to one dimension.
We now present the summary of an exact calculation
demonstrating the binding energy of two 3D spin-orbit
coupled Fermions is enhanced. For the complete calcula-
tion see the Supplemental Materials [26]. To search for
bound states of two Fermions with 3D spin-orbit coupling,
we solve the two-particle Schrödinger’s equation

½Hsoðk1Þ � 1̂þ 1̂ �Hsoðk2Þ�j�i þ V12j�i ¼ �j�i; (11)

where V̂12 is the two-particle interaction potential, and the
tensor product implies an operator on the left operates on
particle 1, and the operator on the right operates on particle
2. We assume the interaction to be purely local s wave.
This equation can be expressed in self-consistent form as

j�i ¼ ĜV̂12j�i; (12)

where the Green’s function is defined as

Ĝ ¼ ½ðHso � �=2Þ � 1̂þ 1̂ � ðHso ��=2Þ��1: (13)

The ground state of a spin-orbit coupled atom will have
energy Eso ¼ �mv2=2. We therefore search for solutions
of (12) with energy E< 2Eso ¼ �mv2. We define the
binding energy as " ¼ �mv2 � �> 0.

The s-wave character of V̂12 will project the ground state
into the singlet channel. Upon integration over the relative
momentum coordinate k ¼ k1 � k2, we can express the
self-consistency equation as

FIG. 3 (color online). Energy spectrum of the isotropic
3DSOC. (a) Energy spectrum of spherical ground state manifold
jpj ¼ mv with E ¼ �mv2=2. Near the ground state manifold
the dispersion Eð�pÞ is approximately parabolic in a small
deviation �p from the momentum of the ground state.
(b) Shells of constant energy, En ¼ �ð1� 0:1nÞmv2=2 with
n ¼ 0, 1, 2, 3. These low energy shells have smaller surface
area until p ¼ 0. (c) A one dimensional cut of the energy
spectrum. The full spectrum is generated by rotating this spec-
trum along three axes. The blue (red) band corresponds to states
with momentum aligned (antialigned) with spin.
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v0

Z d3k

ð2�Þ3 hc sjGðk;QÞjc si ¼ 1; (14)

where jc si is the projection of the exact ground state into
the singlet channel,Q ¼ 1

2 ðk1 þ k2Þ is the center of mass

momentum, and v0 is the characteristic scale of the in-
teraction. The bound state j�BðQÞi will appear as a solu-
tion to this equation with energy �<�2ðmv2

2 Þ, which is

twice the ground state of a single spin-orbit coupled
fermion. We find that the binding energy of two fermions
is given by

" ¼ ��mv2 ¼ �mv2ðmva0Þ2 (15)

at Q ¼ 0 to lowest order in "=mv2. Thus, there exists a
negative energy two-fermion bound state with energy that
is algebraic in the interaction strength, consistent with the
mean-field results obtained previously [14]. This is in
contrast to a system of two fermions without spin-orbit
coupling where there is no bound state in three dimen-
sions for weak attraction. The existence of this bound
state results from the enhanced density of states near the
2D surface defined by jpj ¼ mv. The additional states
increase the effect of quantum fluctuations and provide
an effective dimensional reduction of the system by 2 to
D ¼ 3� 2 ¼ 1.

For nonzero center of mass momentum Q, the binding
energy of the system becomes Q dependent. For Q � mv

the binding energy is "ðQÞ ¼ �mv2ðmva0Þ2 � Q2

4m þ
OðQÞ4, which is the dispersion for the center of mass of
the free particle. At large momenta near Q�mv, the self-
consistency equation no longer has a solution, and no
bound state is possible. We note that the binding energy
is a monotonically decreasing function of�, and thus there
is exactly one bound state for sufficiently small Q. This
single bound state results from the delta function interac-
tion. Additional bound states may be possible for other
interactions, such as a square well or a p-wave interaction.

In conclusion, we proposed a scheme to produce a
3DSOC using two-photon transitions to couple four atomic
levels in a tetrahedral topology. In the limit of large optical
power, the ground state is defined by a sphere. The origin of
this coupling can be viewed as an approximation of the
desired spherical momentum-space ground state manifold
by a tetrahedron, whose spherical symmetry is restored in
the infinite coupling limit. Such a coupling could give rise to
interesting many-body systems, such as a Bose liquid [27],
or with the addition of suitable band gaps, Weyl fermions.
Finally, we present an exact solution for the bound state
energy of two fermions with a spherical 3D spin-orbit
coupling. Such a bound state is found to always exist for
sufficiently small center ofmassmomentum, and the energy
of the bound state is algebraic in the interaction strength.
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After the completion of this work, we were made aware

of a similar calculation on the bound states of 3DSOC
coupled fermions [28,29], but not the possible origin of
such coupling, as well as a possible implementation of
3DSOC on a lattice [30].
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