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shown to be responsible for the near-ubiquitous magnetic stochasticity and associated electromagnetic

electron heat transport in electromagnetic gyrokinetic simulations of plasma microturbulence.
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Introduction.—To date, many key aspects of turbulent
transport in magnetized fusion plasmas remain poorly
understood. This includes, in particular, the origin and
role of magnetic field fluctuations which are observed in
both experiments and simulations. These fluctuations
evolve self-consistently with other turbulent quantities
and allow heat to be transported radially via electrons
streaming along perturbed field lines. The relative impor-
tance of this effect is expected to increase with the nor-
malized plasma pressure, �. Since high � is desirable for
many aspects of high-performance discharges (reaction
rates, e.g., scale like �2), unraveling the characteristics
of turbulent transport in this regime is an active and im-
portant area of current research.

Over the last few years, gyrokinetic simulations have
provided some surprising results concerning electromag-
netic effects in plasma microturbulence (see, e.g.,
Refs. [1–6]). Notably, in the case of ion temperature gra-
dient (ITG) turbulence, systematic � scans [4,5] have been
performed, showing that the electromagnetic electron heat
transport increases roughly as �2 until it becomes compa-
rable to the electrostatic contributions. Moreover, the re-
sulting magnetic field fluctuations exhibit fully developed
stochasticity even at low values of � [7–9]. Both of these
empirical findings are puzzling and cannot be understood
on the basis of quasilinear theory. The latter predicts a
linear transport scaling with �, as well as negligible sto-
chasticity, given that ITG modes are not well structured to
break magnetic field lines.

Via novel analysis techniques (developed for the study
of damped eigenmode excitation [10–12]) applied to elec-
tromagnetic gyrokinetic simulations with the GENE code
[1], we provide an explanation for both observations which
is outside the standard theoretical framework of plasma
microturbulence. While traditionally, turbulent transport in
the plasma core has been linked almost exclusively [13] to
linearly unstable modes, the scenario that emerges here is
that linearly damped, but nonlinearly driven, microtearing
modes become important or even dominant at high �.
Moreover, it is shown that the relevant excitation mecha-
nism involves a nonlinear coupling with zonal modes,

defined here as fluctuations at ky ¼ 0. This definition

encompasses both the zonal flow and other fluctuations,
such as the geodesic acoustic mode [14] (ky is the Fourier

wave number for the binormal direction). Zonal modes are
well known to play a critical role in moderating turbulent
saturation levels. In contrast, here we introduce another
role of zonal modes as the catalyst of an additional trans-
port mechanism.
Simulation setup.—Much of the data used in the follow-

ing analysis are taken from the GENE data set described in
Ref. [5]. The widely used cyclone base case [15] parame-
ters are employed, with the addition of finite electron
plasma � ¼ 8�neTe0=B

2
0 (where ne and Te0 are the back-

ground electron density and temperature, and B0 is the
magnitude of the background magnetic field), ranging
from the electrostatic limit to � ¼ 0:012. The reader is
referred to Ref. [5] for a detailed description of the physical
and numerical parameters.
Occurrence of tearing structures.—In a first step, we

demonstrate the presence of tearing structures in the tur-
bulence, and show that they are responsible for the ob-
served magnetic stochasticity and transport. Tearing
structures are perturbations which have a resonant compo-
nent of the parallel magnetic vector potential, Ak. The
resonant component can be extracted by integrating along
the field line at a q-rational surface, where q is the safety
factor. A structure with tearing parity—even symmetry for
Ak along the field line—will typically have a strong reso-

nant component. In contrast, a structure with ballooning
parity—odd parity along the magnetic field, as is character-
istic of the ITG mode—will have no resonant component.
In order to identify tearing structures, we construct proper
orthogonal decompositions (PODs) [16,17] of Ak. This
yields Akðz; tÞ ¼ P

nA
ðnÞ
k ðzÞhðnÞðtÞ, where z is the coordi-

nate parallel to the background magnetic field, and both the

mode structures AðnÞ
k ðzÞ and the time traces hðnÞðtÞ are

orthogonal and arranged in order of decreasing amplitude.
More specifically, we seek to decompose Ak into com-

ponents with even and odd parity, corresponding, respec-
tively, to subdominant tearing modes and ITG modes, as it
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will turn out. We do this by constructing a POD of every
linearly independent set of wave numbers in the full
Akkx;ky ðz; tÞ data set, where kx is the radial Fourier wave

number. A linearly independent set of wave numbers con-
sists of a single ky wave number and all kx wave numbers

that define its extended mode structure, i.e., the kx modes
which are connected by the flux tube parallel boundary
condition [18] and are identical to the kx modes that are
resolved in a corresponding linear simulation. It is ob-
served that the n ¼ 1 POD mode structure matches very
closely the mode structure of the unstable ITG mode at
wave numbers with strong linear drive. This is an indica-
tion of the effectiveness of this analysis in separating the
role of the most unstable ITG modes from that of subdo-
minant modes. The first two Ak POD modes almost invari-

ably define a clear ballooning component and a clear
tearing component. An example is shown in Fig. 1, where
the n ¼ 1 and n ¼ 2modes are plotted for � ¼ 0:003, and

ky�s ¼ 0:2, kx�s ¼ 0 [where �s ¼ ðmiTe0Þ1=2=eB0 is the

ion sound radius]. As will be shown, almost all of the
stochasticity and transport can be captured with only these
two modes (i.e., the first two POD modes for each wave
number).

When the central kx value is nonzero, the modes may
peak away from the outboard midplane (z ¼ 0) and also
exhibit some mixing of the parity. Even in these cases,
there typically remains one mode which is predominantly
tearing and one which is predominantly ballooning. In
order to automatically distinguish the ballooning compo-
nents from the tearing components, a parity factor is de-
fined, P ¼ jR dzAkj=

R
dzjAkj. The parity factor is zero for

pure ballooning parity and may approach a value of one for
tearing parity modes. This can be used to decompose the
entire Ak data set according to

Akkx;ky ðz; tÞ ¼ AðballÞ
k þ AðtearÞ

k þ AðresÞ
k ; (1)

where the ballooning component (ball) is defined as which-
ever of the first two POD modes has the smaller parity
factor, the tearing component (tear) is whichever of the first
two POD modes has the larger parity factor, and the
rest of the POD modes are grouped into the residual
category (res).

This analysis procedure can be summarized as follows.
(1) Select from the Ak fluctuation data a single kx and ky,

along with all kx modes connected by the parallel boundary
condition. (2) Construct a POD of this data set. (3) Select
from the first two POD modes the one with the largest
parity factor and group it in the tearing component of the
decomposition. (4) Select from the first two POD modes
the one with the smaller parity factor and group it in the
ballooning component of the decomposition. (5) Repeat
steps (1)–(4) for all sets of wave numbers in the data set.
The result is a decomposition [as defined in Eq. (1)] of
Akkx;ky ðz; tÞ which defines a dominant ballooning compo-

nent and a dominant tearing component.
Stochasticity and transport due to tearing structures.—

With this tearing-ballooning decomposition in hand, we
can study the contribution of each component to the mag-
netic field fluctuations and transport. In order to do this, a
routine is used to follow the trajectory of magnetic field
lines and track their deviation from the equilibrium field.
Poincaré plots verify that the tearing component produces
a fully stochastic field; i.e., the field lines are no longer
confined to flux surfaces, but rather fill the simulation
volume. This can be quantified with a magnetic diffusivity
Dfl ¼ liml!1h½riðlÞ � rið0Þ�2i=l [8], where ri is the radial
position of the ith field line, l is the distance traced along
the field line, and an average is taken over all traced field
lines. Across the � scan, the tearing component of Ak
produces a magnetic diffusivity that is comparable to that
of the total Ak, while the ballooning and residual compo-

nents produce comparatively negligible diffusivities.
In Refs. [8,9], the magnetic diffusivity is shown to have

quite a direct relation to the electron electromagnetic heat
transport QEM

e ¼ h~qek ~Bxi=B0, where hi denotes a spatial

average, ~qek is the parallel heat flux moment, and ~Bx is the

radial component of the fluctuating magnetic field. Using
the tearing-ballooning decomposition, we can directly cal-
culate different contributions to QEM

e . The QEM
e ky spectra

are quite distinctive {see, e.g., Fig. 6(b) in Ref. [4]}; they
exhibit a dip in the flux at the same scales where the
electrostatic transport channel peaks. This dip dominates
at low � and becomes less prominent as � increases. The
present analysis shows that this feature is the result of the
superposition of the transport associated with the ITG
modes and the stochastic transport associated with the
subdominant tearing modes, as will be described below.
Using the decomposition defined in Eq. (1), one can

define a ballooning component of the flux h~qek ~Bball
x i=B0,

a tearing component h~qek ~Btear
x i=B0, and the residual

h~qek ~Bres
x i=B0. The ky flux spectra (at � ¼ 0:003) for the

different components are shown in Fig. 2. The ballooning
component of the flux defines a heat pinch that peaks in the
low ky region where the ITG modes dominate. In contrast,

the tearing component of the transport is outward, also
peaking at low ky, but additionally extending with signifi-

cant amplitude to the higher wave numbers in the

FIG. 1 (color online). Typical Ak POD mode structures. The
n ¼ 1 mode (left) has ballooning parity, and the n ¼ 2 mode
(right) has tearing parity.
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spectrum. The total transport spectrum is a superposition of
these two contributions. In order to further elucidate the
components of the transport, we express the parallel heat
flux in terms of the parallel temperature gradient along a
perturbed field line [2],

~q ek ¼ �n0e�ek
�
d ~Tek
dz

þ ~Bx

B0

d ~Tek
dx

þ ~Bx

B0

dTe0

dx

�
; (2)

where n0e is the electron density and �ek is the parallel

electron heat conductivity. As it turns out, the ITG modes
mainly contribute via the first term which scales like � [5],
while the third term is closely related to the field line
diffusivity, Dfl, and describes the heat transport due to

streaming along stochastic field lines. The latter is pro-
duced by the tearing structures; it scales like �2 and thus
dominates as � increases.

Nonlinear excitation via zonal modes.—Having demon-
strated the role of tearing structures in the magnetic sto-
chasticity and transport, we turn now to identifying an
excitation mechanism. To this end, we first construct a
POD of the gyrocenter distribution function from a GENE

simulation and examine the energetics of the tearing
fluctuations. We examine in detail the wave number
ky�s ¼ 0:2, kx�s ¼ 0 for the � ¼ 0:003 case. The n ¼ 4

mode in the POD exhibits clear tearing parity and also
defines the dominant outward contribution to the electro-
magnetic heat flux. In order to examine the excitation
mechanism of this mode, we construct nonlinear energy
transfer functions [19]. The free energy is defined as Ek ¼P

j

R
dzdvkd�Tj0=Fj0ðgjk þ qjFj0=Tj0�jkÞ�gjk, where

vk and � are the two velocity coordinates, j denotes the

particle species, gj is the gyrocenter distribution function,

qj is particle charge, Fj0 is the background Maxwellian

distribution function, �j ¼ ��j þ vTjvk �Akj, where the

overbar denotes a gyroaverage, and vTj is the particle

thermal velocity. The corresponding energy evolution
equation is

@tEk ¼ L½gk; gk� þ
X
k0x;k0y

N ½gk; gk0 ; gk�k0 � þ c:c:; (3)

where L includes the linear gyrokinetic operator, and the
nonlinear energy transfer function N is defined as

N k;k0 ¼ X
j

Z
dzdvkd�ðk0xky � kxk

0
yÞ

� ½qj��
jk�jk0gjðk�k0Þ � Tj0=Fj0g

�
jk�jðk�k0Þgjk0 �:

(4)

The latter represents the energy transferred conservatively
between the wave numbers ðkx; kyÞ and ðk0x; k0yÞ as evi-

denced by the property,N k;k0 ¼ �N k0;k. This, however,

defines the nonlinear energy transfer function for all fluc-
tuations at a given wave number; a refinement is necessary
to examine the energetics of the tearing mode of interest:

@tE
ðtearÞ
k ¼L½gðtearÞk ;gk�þ

P
k0N ½gðtearÞk ;gk0 ;gk�k0 �, where

gðtearÞ represents the POD tearing mode described above,
and the left-hand side represents the evolution of the tear-
ing mode energy because of the orthogonality of the POD
modes. It is observed that the nonlinear energy transfer for
the tearing mode is dominated by energy injected into the
mode from wave numbers at the same ky and jkxj> 0, and

energy transferred out of the mode into zonal wave num-
bers (ky ¼ 0). Note that both of these energy transfer

channels represent coupling with zonal modes. A closer
examination shows that the energetics of the mode is
dominated by the imbalance between this energy transfer,
as demonstrated in Fig. 3, where the free energy of the
tearing mode is plotted along with the total nonlinear drive
and the component of the nonlinear drive defined by the
subset of wave numbers representing zonal coupling:
k0y�s ¼ 0:2 and k0y�s ¼ 0. This subset captures the major

trends in the energy balance. The linear term in the energy
equation (not shown in Fig. 3) occasionally plays a role but

FIG. 3 (color online). The free energy in the POD tearing
mode (solid black line) at kx�s ¼ 0, ky�s ¼ 0:2, and � ¼
0:003, along with the total nonlinear drive (gray line—red on-
line) and the nonlinear drive defined by coupling with zonal
wave numbers (dashed line—blue online), plotted over a time
segment of the nonlinear saturated state. The energetics of the
tearing mode is dominated by the nonlinear drive which consists
largely of the zonal coupling.

FIG. 2 (color online). The total electromagnetic electron heat
flux spectrum (plus signs), summed over kx for � ¼ 0:003,
decomposed into contributions from tearing modes (crosses),
ballooning modes (asterisks), and all remaining fluctuations
(circles).
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is, in general, much smaller than the nonlinear term which
dominates both the drive and saturation of the tearing
mode. We thus have the unique situation where the satu-
ration mechanism for the driving ITG instability in turn
produces a significant additional transport channel.

Tearing structures are microtearing modes.—One may
now ask if this POD tearing mode finds an analog in the
linear eigenmode spectrum. An examination of the linear
spectrum reveals several marginally stable tearing parity
modes which are essentially electrostatic in nature. In order
to find a mode which produces the transport described
above, we employ a direct eigenvalue solver (incorporated
into the GENE code, see Ref. [20]) that resolves all eigen-
modes in the spectrum, but is very numerically demanding.
A reduced resolution test case [(9, 16, 32, 8) grid points in
ðkx; z; vk; �Þ] reveals one eigenmode which has a tearing

mode structure largely matching the POD mode described
above and also produces a significant value of QEM

e . A
series of numerical tests indicate that this mode is a legiti-
mate microtearing mode similar to those described in
Ref. [21]. The mode is sensitive to changes in the electron
temperature gradient but not the ion temperature gradient;
it is fundamentally changed in the electrostatic limit but
not when the electrostatic potential is artificially deleted.
For this problem, linear convergence tests are, ironically,
more demanding than nonlinear convergence tests. Careful
nonlinear convergence tests were performed and reported
in Ref. [5]. These tests have been augmented by a high kx
resolution GENE simulation (kxmax

�s ¼ 11:9) which shows

no significant change in the transport quantities.
A simple transport model.—The scenario described

above implies that a significant component of the transport
is not directly attributable to the driving instabilities.
Such a situation is clearly not captured by quasilinear
theory. Here, we describe a first attempt to devise a simple
model that reproduces the observed � dependence of
QEM

e , using as inputs the ion electrostatic heat flux and
one free parameter that can be determined at a single point
in the scan.

The nonlinear nature of the tearing mode excitation
motivates the hypothesis that the level of electromagnetic
electron heat flux (due to the tearing modes) can be mod-
eled as a fixed fraction of the ion electrostatic heat trans-
port (due to the dominant instabilities) multiplied by the
appropriate factor of �2 (consistent with Ref. [5]):
QEM

e ð�Þ ¼ C0�
2QES

i . In Fig. 4, this estimate is plotted
across the � scan along with the total value of QEM

e (C0

is calculated at � ¼ 0:008). This model can be improved
by also accounting for the contribution of the ITG modes
themselves to QEM

e . This is done with the quasilinear

estimate QEMðballÞ
e ¼QES

i ðQEM
e =QES

i ÞMU, where ðQEM
e =

QES
i ÞMU is the ratio of fluxes for the most unstable linear

eigenmode (ITG mode at lower � and trapped electron
mode at higher �) at the peak of the spectrum (ky�s ¼
0:15). This estimate,QEM

e ¼ QES
i fC0�

2 þ ðQEM
e =QES

i ÞMUg,

is also plotted in Fig. 4. Its merit is reflected in the im-
proved agreement at lower � where the inward ballooning
transport is a non-negligible fraction of the whole.
Summary.—In this Letter, we have shown that magnetic

stochasticity and transport in ITG turbulence is caused by
linearly stable microtearing modes that are excited by
nonlinear coupling to zonal wave numbers. These insights
are expected to improve the understanding and control of
magnetized high-� plasmas.
Simulation results were obtained using computing re-

sources on the HPC-FF system at Forschungszentrum
Jülich, Germany, and NCCS at ORNL, USA, under DOE
Contract No. DE-AC05-00OR22725. This work was also
supported by LLNL through DOE Contract No. DE-AC52-
07NA27344.
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