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We present a solid-state tunable terahertz source that exploits the theory of coupled oscillators to

simultaneously achieve high output power and frequency tuning. Our proposed structure effectively

generates and combines high power harmonics from multiple synchronized solid-state oscillators in a loop

configuration. We study the dynamics of the system, find the stable modes, and show how the structure can

dynamically select a desired coupling mode. Using this method, we fabricated 0.29 and 0.32 THz tunable

sources with peak output powers of 0.76 and 0.5 mW both in a standard 65 nm bulk complementary metal-

oxide semiconductor technology. This power level is around 10 000 times larger than the state of the art

which demonstrates that the proposed concept achieves significantly higher output power for a given

solid-state process.
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The terahertz range (0.3–3 THz) is one of the last
frontiers in the electromagnetic spectrum. Many molecules
have absorption bands inside this frequency range which
gives terahertz systems niche applications in medical
imaging and molecular spectroscopy. In addition, terahertz
signals are non-ionizing which is crucial for noninvasive
imaging.

Different approaches to generate power at this band
include free-electron lasers, solid-state quantum cascade
lasers, and Josephson arrays at cryogenic temperatures
[1–3]. Despite recent advances, these methods are still
complex, bulky, and cost-inefficient. Therefore, it is desir-
able to generate terahertz signals using low-cost solid-state
devices. This approach results in reliable, portable, and
cost-efficient terahertz systems that can be integrated with
other functions on a single die.

The challenge with solid-state implementation is that the
maximum oscillation frequency fmax in most devices—in
particular the silicon metal-oxide semiconductor (MOS)
transistor—is below the terahertz frequency band. Previous
attempts have either used a fundamental oscillator using
compound semiconductor (e.g., InP HBT) transistors [4] or
employed the device nonlinearity to generate harmonic
power from an oscillator below fmax [5]. However, because
of the narrow spectral bandwidth of electrical oscillators—
typically less than 1 MHz—frequency tuning is crucial for
such a source to be applicable to spectroscopy and
imaging.

Frequency tuning above the fmax of transistors is a major
challenge. The well-established tuning scheme introduces
varactors inside the resonator to tune the center frequency
of oscillation. This method is not applicable to sub-mm
wave frequencies mainly because of the poor quality factor
of varactors at this frequency range. As an example, at-
tempts to generate tunable power using MOS devices have
only achieved sub-�W output powers, which is not suffi-
cient for most applications [6]. In this Letter and for the

first time we address this concern by proposing a funda-
mentally different tuning methodology. The proposed ap-
proach of frequency tuning is based on coupling between
multiple core oscillators.
The dynamics of coupled oscillators has been the subject

of extensive work. The collective dynamics of randomly
distributed oscillators has been a key to understanding
biological and chemical systems [7,8]. Electrical oscilla-
tors have also exploited frequency synchronization for
power combining and beam steering [9,10].
Our proposed method uses N coupled oscillators in a

ring structure as shown in Fig. 1. In this scheme all oscil-
lators have the same free running frequency of!0 and each
one is unidirectionally coupled to its neighbor through an
adjustable coupling block. We show that the coupling
characteristics control the dynamics of the loop, including
the locking frequency. This system has two distinct
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FIG. 1 (color online). A ring of N actively coupled electrical
oscillators. The gray circles represent the core oscillators and the
blue blocks are the coupling phase shifters.
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advantages. First, since the core oscillators do not use low-
quality factor tuning elements, they can generate high
harmonic power. Second, by controlling the loop dynam-
ics, we impose certain phase shifts between the cores. This
results in constructive power combining only at the desired
harmonic from all core oscillators at the center of the loop.

In order to analyze the behavior of this coupled system,
we define �i as the phase of the ith oscillator and assume
K expði�cÞ to be the transfer function of the coupling
block. As a result, the coupling block is represented by
an electrical phase shifter with a phase shift equal to �c

and a coupling gain of K. This is a good approximation for
the implemented coupling block using complementary
metal-oxide semiconductor transistors. The coupling fac-
tor K in an LC oscillator is equal to iinj!0=ð2QicoreÞ [11].
Here, iinj is the injected current to each oscillator from the

coupling block, icore is the current produced inside the
oscillator, and Q is the quality factor of the resonator of
each oscillator. Note that both K and �c are controllable
parameters of the coupling block.

Next, we consider the coupling between the ði� 1Þth
and the ith cores. Based on Adler’s equation, the phase
dynamics of the ith core in this structure is

_� i ¼ !0 þ K sinð�i�1 þ�c ��iÞ: (1)

For a loop ofN cores, by defining c i ¼ �i ��i�1, we can
reformulate this relation into

_c i ¼ K sinð�c � c iÞ � K sinð�c � c i�1Þ; (2)

for 1 � i � N. This set of N equations along with the
consistency condition

XN

i¼1

c i ¼ 2n�; n ¼ 0; 1; . . . ; (3)

fully describe the dynamics of the system. For this analysis
we assume the following: All coupling blocks are similar
with a controllable phase shift �c and a constant magni-
tude K. We are interested in the stable solutions of the
system when all core oscillators are synchronized. Under
locking conditions, the phase difference between oscilla-
tors should be constant, resulting in _c i ¼ 0 in Eq. (2). This
can be written in the matrix form as

Kx ¼ 0; (4)

where xi ¼ sinð�c � c 0
i Þ and c 0

i represents the steady
state solution of c i. The coupling matrix, K is equal to

K ¼

K 0 . . . . . . �K

�K K 0 . . . . . .

..

. ..
. ..

. ..
. ..

.

0 . . . . . . �K K

2
6666664

3
7777775
: (5)

This coupling matrix is asymmetric which stems from the
unidirectional coupling of this structure. The trivial

solution of Eq. (4) is xi ¼ 0. This along with Eq. (3) results
in �c ¼ 2n�=N. Such a solution imposes discrete values
for �c, which is not physically stable.
The nontrivial solution of Eq. (4) is in the form of

xi ¼ x1 which leads to two choices for c 0
i :

c 0
i ¼ c 0

1 � 2n�; (6a)

c 0
i ¼ 2�c � �� c 0

1 � 2n�: (6b)

This suggests 2N�1 distinct coupling modes for a given c 0
1.

However, in the next theorem we show that only solutions
with all c 0

i ’s chosen from Eq. (6a) are stable.
Theorem.—If m of c 0

i ’s are chosen from Eq. (6b) and
N �m from Eq. (6a), only solutions corresponding to
m ¼ 0 are stable.
Proof.—In order to show this, we consider the nontrivial

case ofN � 3. We perturb Eq. (4) around each solution. By
letting c i ¼ c 0

i þ �iðtÞ and after linearizing the perturbed
equations, we obtain

_� ¼ Jfc 0
1
...c 0

ng�; (7)

where the elements of the Jacobian matrix are equal to
Jij ¼ �Kij cosð�c � c 0

i Þ. For a solution to be stable, all

eigenvalues of the Jacobian matrix should be nonpositive
[12]. It is straightforward to find the characteristic poly-
nomial of J to be

Pð�Þ ¼ YN

i¼1

ðJii � �Þ �YN

i¼1

Jii

¼ ð�1ÞNð�N þ PN�1�
N�1 þ � � � þ P1�Þ: (8)

Thus, �1 ¼ 0 is an eigenvalue of the Jacobian. We show
that for stable solutions, all other eigenvalues are nonzero.
By elaborating on the characteristic polynomial we find
that the sum (�) and product (�) of the other N � 1
eigenvalues are

�PN�1 ¼
Xn

i¼2

�i ¼ J11ðN � 2mÞ; (9a)

ð�1ÞN�1P1 ¼
YN

i¼2

�i ¼ JN�1
11 ðN � 2mÞð�1Þm: (9b)

Without loss of generality we can assume J11 � 0, and thus
a second zero only happens when N ¼ 2m, requiring both
� and � to be zero. Since in a stable solution no eigen-
value can be positive, � ¼ 0 forces all eigenvalues to be
zero which is not possible for the nonzero Jacobian matrix.
As a result, for a stable solution all the other N � 1
eigenvalues of the coupled system are nonzero.
Next, based on an extended Gershgorin theorem [13],

the eigenvalues of J are inside circles centered at Jii with
equal radii of jJ11j. These are essentially two circles, one
on the left half-plane and the other on the right half-plane
which overlap at the origin.
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If m ¼ 1 and J11 > 0, N �mð� 2Þ Gershgorin circles
lie on the right side; hence, at least one eigenvalue is
positive. On the other hand if J11 < 0 we consider two
cases: (i) For an even N, from Eq. (9b), the product of an
odd number of eigenvalues becomes positive, which means
that at least one eigenvalue is positive; (ii) for an oddN, the
product of even number of eigenvalues becomes negative,
which again means that at least one eigenvalue is positive.
Similarly, one can show that the solutions corresponding to
m ¼ N � 1 are also unstable.

For 2 � m � N � 2 there are more than one Gershgorin
circles on either half-planes, and thus at least one positive
eigenvalue exists which again means that the correspond-
ing steady-state solution is unstable.

Finally, the only stable solutions correspond to m ¼ 0
and J11 < 0 which confines all Gershgorin circles and
eigenvalues to the left half plane. j

As a result of the above theorem, by applying Eq. (3) we
find N distinct stable modes of oscillation,

c 0
k ¼

2k�

N
; 0 � k � N � 1; (10)

where the kth mode is stable as long as J11 < 0, which
means

2�n� �

2
þ c 0

k < �c < 2�nþ �

2
þ c 0

k: (11)

Figure 2 shows the stable regions of the coupled system
with respect to �c. The stable modes have overlap for
N > 2, meaning that for a given �c the system can settle
to one of multiple states depending on the initial dynamics
of the system.

Now, let us consider the coupling dynamics for N ¼ 4.
There are no continuous regions of �c where an initial
condition corresponds to only one stable mode. Consider
the case that the system has settled to c 0

0. By increasing

�c, the system will reach the point that �c passes �=2. At
this instant, the only stable mode is c 0

1 and the system

jumps to this mode. This is because the noise present in the
physical system acts as a perturbation on �c making both
c 0

0 and c 0
2 unstable at values of �c close to �=2.

Since the operating frequency of the system is orders of
magnitude higher than the rate of change of �c, a continu-
ous sweep in �c will keep the system long enough in the
narrow region which corresponds to only one stable solu-
tion, c 0

1. Figure 3 shows simulations for the system with

N ¼ 4 and the hysteresis bifurcation resulting from sweep-
ing �c. We conclude that even in the case of N ¼ 4,
regardless of the initial mode, we can ensure a desired
coupling mode through proper manipulation of �c.
After the system settles to a particular mode c 0

k, the

frequency of all cores are locked together. This locking
frequency form Eq. (1) is equal to

! ¼ !0 þ K sinð�c � c 0
kÞ; (12)

which gives the frequency tuning range. We apply this
tuning method to implement a tunable frequency source.
The proposed system consists of four core oscillators
coupled together through four tunable phase shifters.
In this scheme, the core oscillators can efficiently gen-

erate and deliver the harmonic power because they do not
include any low quality factor elements (e.g., varactors)
inside the resonator. The fundamental frequency of all four
cores is carefully chosen for generating the highest pos-
sible power around 0.3 THz. The transistors used for this
design have a simulated fmax of 200 GHz. By lowering the
oscillation frequency, more power can be generated at the
fundamental and the harmonics but the achievable fre-
quency is reduced. On the other hand, at oscillation
frequencies close to fmax the power generated at the fun-
damental and the harmonics are significantly reduced.
Based on this argument, using an oscillation frequency of
75 GHz and delivering the fourth harmonic power is opti-
mal for the employed devices.
The harmonic power of the cores are combined at the

center of the loop. The coupled system is designed to
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FIG. 2 (color online). Stable modes and their corresponding
regions (a) for N ¼ 3 and (b) for N ¼ 5. (c) The stable modes
for N ¼ 4 and mode transitions at the edge of stability.
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FIG. 3 (color online). Simulated mode transition (c ) for
N ¼ 4 as a function of �c. (a) Transition form c 0
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operate at the c 0
1 ¼ �=2 coupling mode. In this mode, the

generated power at the kth harmonic shows a phase shift
equal to k�=2 between consecutive cores. As a result, only
the generated harmonics at multiples of four of the funda-
mental add constructively at the output, which means the
signal source acts like a fundamental oscillator at 4!.

The coupling block is a tunable phase shifter composed
of two back-to-back resonance amplifiers with a tunable
center frequency. The resonators of phase shifters are
isolated from the core oscillators in order to avoid any
degradation of the quality factor of the core resonators. The
phase shift of the coupling block resonator depends on its
center frequency !c as well as the operating frequency !.
While we have control over !c, ! is determined by the
dynamics of the loop including the phase shifters. This
results in an iterative mechanism for tuning !. From
Eq. (12) the tuning range depends on K and the range of
�c, both of which depend on the resonator of the coupling
block. The highest variation of �c happens around !c and
as a result, for the highest tuning range this frequency has
to match !0.

We have fabricated two prototypes at center frequencies
of 0.29 and 0.32 THz in a standard 65 nm bulk comple-
mentary metal-oxide semiconductor process. The output
power is measured using a calibrated wideband calorimeter
through matched rectangular waveguides. Figure 4 shows
the measured power for the two oscillators. The peak out-
put power is around 0.76 mW, which is around 10 000
higher than conventional tunable signal sources around
this frequency range using a similar process. Moreover, a
higher output power can be achieved by incorporating

more cores (i.e., a larger N) in the coupled system. The
silicon process that we use has a fairly low Ebvsat product
where Eb is the breakdown field and vsat is the saturation
velocity of carriers. If this structure is used in processes
with higher Eb such as GaN, higher power levels are
achievable. Furthermore, if we implement this system in
a process with higher fmax such as InP, it is possible to
generate this power level well above 1 THz.
The output frequency and the tuning range shown in

Fig. 4 are measured using a diode harmonic mixer. The
gain of the phase shifter varies with respect to both ! and
!c, which result in variation of K with frequency. This
explains the variation of the output power and the slope of
the output frequency in Fig. 4. The phase shift �c is
designed to center around �=2, which according to Fig. 2
is the optimal point for tuning the frequency at the c o

1

coupling mode.
It is intriguing to consider the asymmetric tuning case

where �c is controlled independently for the N coupling
blocks. Here, the same theoretical treatment results in
stable modes only for m ¼ 0. However, in this case
Eq. (6a) should be replaced with

c 0
i ��i

c ¼ c 0
i�1 ��i�1

c ; (13)

where�i
c is independently set for the ith coupling block. In

other words, the phase shift c between the cores can be
manipulated. In this design, it is possible to allow each
oscillator to radiate separately and spatially combine their
outputs. It is therefore possible to perform beam steering
and frequency tuning at the same time.
We thank Steven Strogatz and Mohammad Soltani for

helpful discussions.
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FIG. 4 (color online). (a) Measured output frequency and
(b) measured output power as a function of the control voltage
of the coupler for the two fabricated versions of the source. The
top view of the chip is included.
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