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We study the coherence and fluorescence properties of the coherently pumped and dissipative Jaynes-

Cummings-Hubbard model describing polaritons in a coupled-cavity array. At weak hopping we find

strong signatures of photon blockade similar to single-cavity systems. At strong hopping the state of the

photons in the array depends on its size. While the photon blockade persists in a dimer consisting of two

coupled cavities, a coherent state forms on an extended lattice, which can be described in terms of a

semiclassical model.
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The realization of effective photon-photon interactions
in various cavity QED systems has triggered an immense
interest in using these light-matter systems for quantum
computation and simulation. A central element of this
work is the photon blockade [1], where the presence of a
single photon in a driven cavity prevents more photons
from entering. Key experimental signatures of this effect
are antiresonant line shapes in homodyne or heterodyne
detection [2] as well as photon antibunching and the ap-
pearance of a dressed state Mollow triplet in resonance
fluorescence spectra [3]. So far, these signatures have been
observed in single cavity systems.

With the unprecedented control of recent experiments at
hand, a key challenge in the study of coupled light-matter
systems is the interplay of strong correlations and collec-
tive behavior in extended systems. Recent experimental
progress includes the realization of a Tavis-Cummings
nonlinearity with superconducting qubits in circuit QED
[4,5], a BEC of weakly interacting exciton-polaritons in
semiconductor microcavities [6], and a non-equilibrium
superradiant state using ultracold atoms in optical cavities
[7]. Theoretical interest has focused on a possible Mott
insulator-superfluid transition of polaritons in coupled-
cavity arrays as described by the Jaynes-Cummings-
Hubbard model (JCHM), where each cavity is strongly
coupled to a two-level system (2LS) and photons can hop
between cavities [8–15]. However, with a few exceptions
[16–19], most of these studies did not take into account the
basic nature of quantum optical applications, drive and
dissipation.

In this Letter, we study the coherently pumped JCHM
including dissipation via spontaneous emission of the 2LS
and cavity loss. We compare exact numerical simulations
of a dimer of two coupled cavities with mean-field theory
for an extended array. We calculate the pump frequency

dependence of the photon field as measured in a homodyne
or heterodyne detection scheme, the second-order coher-
ence function (photon statistics), and the fluorescence
(emission) spectra. At weak hopping, we find strong sig-
natures of photon blockade as observed in single-cavity
systems. At strong hopping, the state of the photons in the
driven-dissipative array depends on its size. In a dimer
model consisting of two coupled cavities we find a photon
blockade even at large hopping. For a lattice consisting
of infinitely many coupled cavities the blockade effect
vanishes and a coherent photon state emerges, which can
be described semiclassically. We find that the crossover
from weak to strong hopping is smooth as long as the array
is pumped at the bottom of the lower polariton band.
Higher pump frequencies may cause tunneling-induced
bistabilities.
The driven JCHM is described by the Hamiltonian

H ¼ X
i

hJCi � J

z

X
hiji

ayi aj þ f
X
i

ðayi þ aiÞ: (1)

Here, hJCi denotes the Jaynes-Cummings model (JCM) at
site i of the array,

hJCi ¼ �ra
y
i ai þ

�q

2
�z

i þ gð�þ
i ai þ ��

i a
y
i Þ: (2)

Each 2LS is represented by a spin operator and coupled to
the cavity photons with strength g. The second term in
Eq. (1) describes the hopping of photons to one of its z
nearest neighbors at a rate J=z (such that the total band-
width is 2J). All cavities are subject to a coherent laser
drive of strength f described by the third term in Eq. (1).
Working in a frame that rotates at the pump (laser)
frequency !l, we measure the energies of resonators
(cavities) and 2LS (qubits) with respect to the pump,
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�rðqÞ ¼ !rðqÞ �!l. Dissipation is taken into account in the

master equation for the density matrix

_� ¼ �i ½H;�� þ �

2
L½ai� þ �

2
L½��

i � ; (3)

with L½��
i � ¼

P
ið2��

i ��
þ
i � �þ

i �
�
i �� ��þ

i �
�
i Þ and a

similar decay term for the photon operators. Here � de-
notes the cavity decay rate and � the spontaneous emission
rate of the 2LS.

Recently, it was shown that the single driven and dis-
sipative JCM (J ¼ 0) for zero detuning (!r ¼ !q) yields

surprisingly complex behavior [2,20], which we briefly
summarize here. The local Hamiltonian in Eq. (2) has
eigenstates that are symmetric and antisymmetric super-
positions of excited 2LS and photon states, upper and
lower polariton dressed states [Fig. 1(a)]. Pumping weakly
near the lower polariton, �r � g, yields a resonance in the
photon field � ¼ hai with a Lorentzian line shape [dashed
line in Fig. 2(a)]. However, beyond the linear response the
homodyne signal turns into antiresonant behavior and the
Lorentzian develops a central dip of width �f=g [black
line in Fig. 2(a)]. This effect can be understood by restrict-
ing the Hilbert space to two states, the vacuum and the state
with a single lower polariton (LP). The antiresonance
arises when this effective 2LS saturates. This effect is the
semiclassical Rabi splitting corresponding to the dressing
of dressed states [21] which has recently been observed in
circuit QED as a Mollow triplet in fluorescence spectra [3].
The 2LS approximation is appropriate as the nonlinearity

Ueff ¼ �2 � 2�1 ¼ gð2� ffiffiffi
2

p Þ of the JCM prevents higher
states from being excited (�1;2 are the lowest energies in the
Hilbert space sector with 1 or 2 excitations, respectively).

We now consider extended systems as described by the
JCHM in Eq. (1) with J � 0. The level scheme for the
lowest excitations is shown in Fig. 1, where we choose
the qubits to be resonant with the symmetric photon state
of the dimer consisting of two coupled cavities [Fig. 1(b)]
or the bottom of the photon band in the infinite array
[Fig. 1(c)]. At weak hopping we expect the coupled-cavity
array to exhibit a similar blockade effect as a single cavity.
At strong hopping the effective nonlinearity in the
spectrum to leading order in g � J is Ueff ¼ 2g

ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=ð2NsÞ

p Þ for a 1D chain. This only vanishes
as the number of lattice sites Ns becomes large. Small
arrays are thus expected to always show photon blockade,
and large ones only at small hopping as the delocalization
over many sites weakens the effective nonlinearity.
Figure 2 shows the photon field � ¼ ha1i and the

second-order coherence gð2Þ ¼ hay1ay1a1a1i=hay1a1i2 for a
dimer model consisting of two coupled cavities as obtained
from exact numerical evaluation of the master equation in
Eq. (3). In Fig. 2(a), the antiresonance broadens when the
hopping strength increases and shifts to larger values of
detuning �r=g, i.e., smaller pump frequencies. The appear-
ance of a second antiresonance for J ¼ 0:05g is associated
with a two-polariton state with one polariton in each cavity.
A similar effect has been reported for a three-site ring
lattice in [19]. The right-hand panel in Fig. 2 shows the
crossover to the large hopping regime for several values of
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FIG. 1 (color online). Level scheme for the lowest excitations
of the JCHM for (a) a single cavity, (b) a dimer model, and (c) a
coupled cavity array. Hopping between cavities gives (anti)
symmetric superpositions of photon states in (b) and photon
bands �ðkÞ ¼ �J cosðkÞ in (c). The qubits Q are resonant with
the lowest photon states: (a) the cavity mode C (!q ¼ !r), (b)

the symmetric superposition of photon states (!q ¼ !r � J),

and (c) the bottom of the photon band (!q ¼ !r � J). This gives

rise to dressed (polariton) states (LP, UP) in (a) and (b) and
polariton bands in (c). In this Letter the laser frequency !l is
near the lowest excitations in the system (bottom of the polariton
band).
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FIG. 2 (color online). Photon field j�j and second-order co-
herence gð2Þ for the dimer of two coupled cavities, (a) as a
function of resonator detuning �r=g at hopping J=g ¼ 0 (black),
0.02 (red or light gray), 0.05 (green or midgray), and drive
strength f=g ¼ 0:005, and (b) as a function of hopping strength
J=g at drive f=g ¼ 0:001 (black), 0.005 (red or light gray), 0.02
(blue or midgray) when the laser frequency is resonant with the
lowest excitation (�r ¼ gþ J, see Fig. 1). The dashed line in (a)
corresponds to a single cavity (J ¼ 0) at very low drive f=g ¼
0:001. The crosses mark points in (a) where �r ¼ gþ J.
Panel (c) shows gð2Þ as a function of the hopping strength J=g
for the same drive strengths as in (b). All dissipation rates are
� ¼ � ¼ 0:005g.
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the pump strength. The antiresonant feature remains for
J � g, i.e., the photon field decreases as a function of
pump strength at fixed hopping. The second-order coher-

ence gð2Þ in Fig. 2 confirms this photon blockade picture.
At weak drive (f � Ueff) photons in the dimer remain

antibunched with gð2Þ � 1 even at strong hopping. Note
that the dimer model is realizable with current state-of-the-
art technology and has been shown to exhibit interesting
new physics due to the coupling between cavities in vari-
ous other contexts [22–27].

We now increase the coordination number z and con-
sider a large array of coupled cavities. Continuous
bands form between the upper and lower polariton states
[Fig. 1(c)] and the full problem is then no longer numeri-
cally tractable. For large z, the hopping term is approxi-

mated by ayi aj � hayi iaj þ ayi haji � hayi ihaji. As all

cavities are equivalent, we take the photon expectation
values to be the same at each site of the array � ¼ haii.
This is the same mean-field decoupling as in the corre-
sponding equilibrium model [8]. It was first used out of
equilibrium to calculate the dynamics of the dissipative
Bose-Hubbard model [16]. One may then find the steady
state of this decoupled on-site problem numerically
(Fig. 3). As in the dimer model, the antiresonance shifts
and broadens with increasing hopping. The two side peaks
of the antiresonance become asymmetric and turn into a
jump corresponding to a hopping-induced bistability.
Similar bistable behavior in quantum optics is well known
for a single strongly driven cavity [28–31] and for the
Dicke model [32]. Here, a bistability develops at fixed
pump strength when increasing the hopping rate J between
cavities [see Fig. 3(a)]. Note that these instabilities only
appear when the array is pumped above the bottom of the

lower polariton band. In Fig. 3(b) we show the crossover to
large hopping. We pump at the bottom of the polariton
band, where no instabilities occur. The curves for different
pump strengths cross and reorder, such that at strong
hopping the photon field increases uniformly with drive
strength. Thus the antiresonance feature vanishes. The

second-order coherence function gð2Þ undergoes a smooth

crossover from antibunching at weak hoppingwith gð2Þ � 0

to a coherent photon state at strong hopping with gð2Þ � 1
even at vanishingly small drive strength. Thus all signa-
tures of the photon blockade effect are destroyed in a large
array at strong hopping due to delocalization effects. For
two cavities, the limited delocalization causes the photon
blockade to be maintained in the dimer.
Another important experimental signature is the fluores-

cence spectrum. We calculate the emission spectrum as the
Fourier transform Sð!Þ of the on-site autocorrelation func-
tion Sð�Þ ¼ hayðtþ �ÞaðtÞi in the steady state of the sys-
tem. Results are shown in Fig. 4. The spectrum of the dimer
(Fig. 4) exhibits a Mollow triplet of emission peaks at weak

hopping at ! � 0,� ffiffiffi
2

p
f arising from transitions between

the vacuum and the lower polariton state (LP1) dressed by
the laser field. This agrees with recent circuit QED experi-
ments in a single cavity and can be interpreted as a
signature of photon blockade [3]. For large hopping, the
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FIG. 3 (color online). Photon field j�j (upper panels) and
second-order coherence gð2Þ (lower panel) for the array as
obtained from mean-field theory for the same parameters as in
Fig. 2. Dashed lines in (a) and (b) correspond to the effective spin
model in Eq. (4). The solid horizontal lines in (b) are the
semiclassical asymptotes for Eq. (5).

FIG. 4 (color online). Fluorescence spectra Sð!Þ for the dimer
(upper panels) and for the array (lower panels) at fixed drive
strength (a) f ¼ 0:01g, (c) f ¼ 0:005g, and fixed hopping (b),
(d) J ¼ 10g. The laser frequency is resonant with the lowest
polariton state (�r ¼ gþ J, see Fig. 1). Blue crosses and red
circles in (c),(d) correspond to the effective models at weak drive
in Eq. (4) and strong hopping in Eq. (5), respectively. The decay
rates are � ¼ � ¼ 0:001g in (a),(b) and � ¼ � ¼ 0:005g in (c),
(d). The effective model in Eq. (4) was applied to the upper and
lower polariton branches separately.
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low-energy spectrum again exhibits a Mollow triplet, how-
ever with modified frequencies near ! � �2f, which is
due to a shift of the weight of the photonic component in
the lower polariton state LP1 with increasing hopping.

The lower panel in Fig. 4 shows the fluorescence spectra
for the array as obtained from mean-field theory. At small
J, the lower polariton mode at ! � 0 splits and the corre-
sponding side peaks move to higher frequencies as hopping
increases. Despite the absence of the photon blockade the
triplet structure survives at large hopping. This is because
the resonant frequency of a single cavity is different from
that of the array—it is detuned by J þ g from the pump. In
the limit of small drive f, where the photon field vanishes,
the emission spectrum is hence due to off-resonance fluo-
rescence of pumping a single 2LS at g below its transition
frequency, giving peaks at �g [Fig. 4(d)]. In Fig. 4(c),
additional peaks with vanishing spectral weight as J ! 0
arise at higher energies! � �2g due to the emission from
upper polariton states (for the dimer these modes are not
visible on the scale shown).

Further insight into the behavior of the array at weak
driving (f � Ueff , where Ueff ! 0 when J � g) can be
gained through an effective model by generalizing the two-
level dressed state approximation derived for a single
cavity in [2] to the JCHM. By projecting into this restricted
Hilbert space, we obtain an effective Hamiltonian

Heff ¼ � ~J

z

X
hiji

�þi ��j þ �

2

X
i

�zi þ ~f
X
i

ð�þi þ ��i Þ; (4)

which is valid when the number of excitations per cavity
is small. The Pauli matrices f�þ; ��; �zg describe the
transition between the vacuum and the lower polariton

at energy � ¼ ð�r þ �q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�r � �qÞ2 þ 4g2

q
Þ=2. Here

~J ¼ Jsin2	 and ~f ¼ �f sinð	Þ are effective hopping and
pump strengths, with 2	 ¼ tan�1ð2g=ð�r � �qÞÞ. The

master equation for the effective system becomes _� ¼
�i ½Heff ; �� þ ð~�=2ÞL½��� with the decay rate ~� ¼
�sin2	þ �cos2	. This model is equivalent to a dissipative
Heisenberg XX model in a magnetic field. Dissipative spin
chains [33–35], with dissipation acting only on the bound-
ary sites, have recently been considered as examples of
non-equilibrium quantum phase transitions. The current
problem, however, differs from these in having dissipation
on all sites. Dissipative spin chain problems also arise in
the context of the Rydberg blockade [36,37]. Using the
same mean-field approximation as above produces an
effective 2LS Hamiltonian Heff ¼ ð�=2Þ�z þ ðfeff�þ þ
H:c:Þ with an effective drive strength feff ¼ �~Jc þ ~f
and the self-consistent field c ¼ h��i. The dashed lines
in Fig. 3 correspond to the steady state of this model and
agree well with the numerical treatment at small drive and
hopping. Since Ueff ! 0 for large J, the blockade picture
breaks down with increasing hopping. The emission

spectra resulting from this approximation are shown as
blue crosses in Fig. 4.
The strong hopping regime of the full lattice can be

understood by relating the JCHM to a pumped dissipative
semiclassical model. Rather than restricting the Hilbert
space to low excitation numbers, we let the photons
occupy a coherent state and factorize products of spin
and photon expectation values. The on-site equations of
motion are

_�i ¼ �i

�
�r�i þ fþ gs�i � J

z

X
hiji

�j

�
� �

2
�i;

_s�i ¼ �i�qs
�
i þ 2ig�is

z
i �

�

2
s�i ;

_szi ¼ �igð�is
��
i ���

i s
�
i Þ � �

�
szi þ

1

2

�
; (5)

where s�i ¼ h��
i i, szi ¼ h�z

i i, and �i ¼ haii. In the steady
state we assume that all sites are identical, �j ¼ �i.

Pumping at the bottom of the polariton band [Fig. 1(c)]
we have �r ¼ gþ J, such that the dependence on hopping
disappears for the steady state in Eq. (5). Figure 3(b) shows
that the corresponding asymptotes (solid horizontal lines)
are indeed approached by the mean-field numerics for
J ! 1. The poles of the low-energy spectra Sð!Þ in this
approximation are found by linearizing the equations of
motion in Eq. (5) about their steady state. Fluctuations on
different sites are uncorrelated in Eq. (5) and the 1=z term
can thus be neglected. This introduces a J dependence into
the spectrum. Figure 4 shows that the predictions of this
model match the full numerics of the lattice mean-field
theory everywhere except at very small hopping (devia-
tions not visible on the scale shown). The equations of
motion in Eq. (5) are the same as those obtained from a
Dicke model where the single-site expectation values in
Eq. (5) are replaced by collective spin variables. However,
the spectra differ from the usual Dicke model in describing
on-site rather than collective fluctuations.
In summary, we have investigated the crossover from

weak to strong hopping in the coherently driven dissipative
JCHM. In the weak hopping limit, blockade physics sur-
vives and both the extended and two-site arrays behave
similarly. At large hopping, blockade effects survive in the
two-site system, while the infinite system becomes semi-
classical and can show bistability for certain pump fre-
quencies. Our work thus provides a strong motivation for
further experimental and theoretical studies of coupled
cavity arrays.
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Türeci, Phys. Rev. B 82, 100507 (2010).
[23] M. Leib and M. J. Hartmann, New J. Phys. 12, 093031

(2010).
[24] M. Knap, E. Arrigoni, W. von der Linden, and J. H. Cole,

Phys. Rev. A 83, 023821 (2011).
[25] T. C. H. Liew and V. Savona, Phys. Rev. Lett. 104, 183601

(2010).
[26] M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, Phys.

Rev. A 83, 021802 (2011).
[27] S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace,
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