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We provide a straightforward demonstration of a fundamental difference between classical and

quantum mechanics for a single local system: namely, the absence of a joint probability distribution of

the position x and momentum p. Elaborating on a recently reported criterion by Bednorz and Belzig

[Phys. Rev. A 83, 052113 (2011)] we derive a simple criterion that must be fulfilled for any joint

probability distribution in classical physics. We demonstrate the violation of this criterion using the

homodyne measurement of a single photon state, thus proving a straightforward signature of the

breakdown of a classical description of the underlying state. Most importantly, the criterion used does

not rely on quantum mechanics and can thus be used to demonstrate nonclassicality of systems not

immediately apparent to exhibit quantum behavior. The criterion is directly applicable to any system

described by the continuous canonical variables x and p, such as a mechanical or an electrical oscillator

and a collective spin of a large ensemble.
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The conceptual differences between classical and quan-
tum physics have intrigued and sometimes bewildered the
physics community since the early days of quantum me-
chanics. This has led to a search for indisputable manifes-
tations of the quantum world through observations of
nonclassical behavior in experiments. A field of particular
curiosity is that of identifying the quantum to classical
crossover for ever larger systems, thereby eventually iden-
tifying nonclassical effects in macroscopic systems.
Recently this has led to the observation of, e.g., macro-
scopic entangled atomic ensembles [1,2], interference of
large molecules [3], and experiments pushing toward
observing nonclassical effects in mechanical oscillators
[4–6]. In parallel to this fundamental interest, nonclassi-
cality is of central importance to quantum information
processing, the essence of which is to advance computation
beyond what is classically possible [7]. However, in some
instances, quantum effects are claimed by demonstrating
consistency with an appropriate quantum model. Yet any
rigorous demonstration of genuine quantum behavior must
exclude the possibility of classical explanations. The im-
portance of this is exemplified in Ref. [8], where a pair of
coupled classical oscillators is shown to exhibit signatures
easily mistaken for those of entanglement expected from a
quantum model. Thus, a definite conclusion on the quan-
tum nature of a system can only result from the breakdown
of the classical description and not from verified agreement
with quantum mechanics. This approach is most rigorously
demonstrated by the Bell inequalities, where the under-
lying model of the system is stripped of any physics and is
reduced to the very basic assumptions of locality and
realism, resulting in an indisputable nonclassicality

criterion. However, by their nature, the Bell inequalities
cannot be investigated by data obtained from a single
system.
In this Letter, we provide a conceptually simple demon-

stration of one of the key discrepancies between classical
and quantummechanics that is valid for systems of a single
degree of freedom: classical systems can always be de-
scribed by a joint probability distribution for x and p, the
two canonically conjugated coordinates of a system,
whereas such a description does not apply in quantum
mechanics due to the Heisenberg uncertainty principle.
This discrepancy is most evident when the phase space
description of the state of a system is examined.
Classically, the phase space distribution Wðxi; piÞ is the
joint probability of finding the system in an infinitesimal
area around x ¼ xi, p ¼ pi, and hence it obeys all the
requirements of a probability distribution including being
a non-negative function. As mentioned, in the case of a
quantum phase space formulation, introduced by Wigner
[9], the Heisenberg uncertainty renders this definition
meaningless, as a joint probability distribution for x and
p does not exist. The phase space distribution is only
defined through the single coordinate (marginal) distribu-
tions, projected from the distribution function [10] and this
relaxation of constraints allows for negative values of the
function in areas smaller than @. This negativity is not
directly observable due to the vacuum fluctuations prevent-
ing simultaneous measurement of x and p. However, one
can still infer the phase space distribution from measure-
ments of only a single observable at a time and detect such
negativities, thereby illuminating the failure of classical
theory.
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The usage of these negativities as markers of nonclassi-
cality has been discussed and demonstrated in several
quantum optics systems [11–15] using tomographic tech-
niques. Often such methods search for the quantum state
most compatible with the experimental data using statisti-
cal inference or variational techniques [16,17] and thus
inherently rely on quantum mechanics. These methods are
therefore not applicable for demonstrating the absence of a
classical description. Alternatively, given the measure-
ments of all the coordinate distributions, the underlying
state can be uniquely determined, and the phase space
distribution fully calculated using the inverse Radon trans-
formation [18] without relying on quantum mechanics.
Though such methods have been used in quantum optics
for demonstrating various states, the mathematical trans-
formation involved is highly complicated. Furthermore,
the numerical stability of the inverse transformation is
problematic, leading to numerical uncertainty at high fre-
quencies, and sometimes results in unphysical states [19].
These limitations are a drawback for using tomographic
techniques for validating the breakdown of a classical
description, and the application of these methods is usually
cumbersome.

Our simple, unambiguous demonstration of the absence
of a classical probability distribution is based on recent
theoretical work by Bednorz and Belzig [20] that verifies
the negativity of the Wigner function based on moments.
As discussed in detail below, their results lead to a hier-
archy of inequalities, such that violation of any one in-
equality indicates negativity of the Wigner function. Full
tomographic reconstruction with the associated numerical
complexities is thereby avoided. We extend this approach
such that it can be applied to quadrature measurement of a
single photon state, and use the experimental data from the
heralded single photon generation to directly disprove the
existence of a joint probability of the position and momen-
tum for this system.

We start by reiterating the key results of Bednorz and
Belzig through a reformulation that relies only on classical
mechanics. The phase space of a system with a single
degree of freedom is fully characterized by a two-
dimensional phase space distribution Wðx; pÞ. That is,
given the phase space distribution, the ensemble averaged
result of any measurable quantity A can be obtained by

hAi ¼
Z

dxdpWðx; pÞAðx; pÞ; (1)

where Aðx; pÞ is the decomposition of the quantity A in
terms of the generalized coordinate x and its canonically
conjugated momentum p.

To disprove the existence of a classical probability dis-
tribution, we examine the ensemble average of a non-
negative test functionFðx; pÞ over a classically explainable
system, which must have a proper distribution function that
results in the ensemble average of F be non-negative,

hFi ¼
Z

dxdpWðx; pÞFðx; pÞ � 0: (2)

Violating this condition is direct proof of the absence of a
joint probability distribution. The condition can, however,
be violated in quantum mechanics, where Wðx; pÞ is the
Wigner function that can contain negative values. The
objective therefore is to optimize a test function such that
it will be dominant at the possible negative areas of the
distribution function. For a rotationally invariant phase
space, both the phase space distribution and the test func-
tion can be described solely by the phase space radius r,
defined by r2 ¼ x2 þ p2. For reasons to become clear later,
we choose a specific form for the test function F, writing it
as a square of an Nth order, even polynomial M with real
coefficients fCigN ,

hFi ¼ hM2i ¼
��

1þ XN=2

n¼1

C2nr
2n

�
2
�
: (3)

Minimizing the above expression for a given order N is
done by straight-forward linear optimization of the coef-
ficients fCigN ,

XN=2

l¼1

hr2ðlþjÞiC2l ¼ �hr2ji; (4)

for all j ¼ 1; 2; . . . ; N=2. Notice that the linearity of the
problem ensures that the obtained minimum of hFi is
global and therefore the most optimal indicator of a pos-
sible violation of Eq. (2) for a given polynomial order N. It
is important to emphasize that this is only a sufficient
criterion for nonclassicality, and an optimized positive
average for a chosen N does not ensure a classical proba-
bility distribution, since the negativity may only be exhib-
ited by the inclusion of higher order terms inM. However,
it is clear that increasing the polynomial order N cannot
increase the minimized value of hFi, and we conjecture
that the limit of N ! 1 will exhibit any negativity of the
Wigner function, as the polynomial can represent an arbi-
trarily (analytical) sharp peaked function F focused at the
negativity. Assuming the existence of all moments (e.g.,
due to an exponentially decaying tail of the phase space
distribution at large r), this then becomes a necessary
criterion for the negativity of the distribution function.
We also note here that similar polynomial expansion has
been discussed [21,22] in the context of the P-function
distribution. The P-function is, however, only defined
within the framework of quantum mechanics, and hence
cannot be used to prove the absence of a classical
description.
We assume that, as is the case for many systems, the

system in question can only be experimentally accessed by
measuring one of the canonically conjugated variables
(e.g., x or p) at a time. Since we are restricted to a single
coordinate measurement at a time, neither the intensity nor
the phase space distribution function is directly accessible.

PRL 108, 233601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
8 JUNE 2012

233601-2



For this method to be applicable to such experimental data,
the functional hFi must be expressed in terms of the mo-
ments of the projected coordinates hQn

�i, where
Q� ¼ cos�xþ sin�p; P� ¼ cos�x� sin�p; (5)

is a measurable rotated coordinate. To do this we use the
identity

ðx2 þ p2ÞN ¼ A2N

X2N
m¼1

�
cos

�
m�

2N

�
xþ sin

�
m�

2N

�
p

�
2N
; (6)

where

A2N ¼ 2N
N

� ��1 22N

2N
: (7)

This is where quantum and classical approaches diverge.
While classically, Eq. (6) represents a measurable physical
quantity, it is missing the key vacuum uncertainty, allowing
for the breakdown of the classical description.

It is interesting to note the implication of identity (6).
For the 2mth moment of the radial distribution to be
known, we need 2m ‘‘cuts’’ in phase space, i.e., different
coordinate measurements at equally distributed angles.
Regardless of any assumption about the underlying state,
the average of Eq. (6) directly gives

hr2Ni ¼ A2N

X2N
m¼1

hðQm�=2NÞ2Ni: (8)

In the special case of a symmetric distribution function
these moments are all identical, and Eq. (8) reduces to

hr2Ni ¼ 2N
N

� ��1

22Nhx2Ni: (9)

The radial moments can thus be indirectly calculated from
the quadrature measurements. Substituting these radial
moments into Eq. (2) using the functional form of
Fðx; pÞ given by Eq. (3), we get, for a given set of mea-
sured moments fhx2kigk, a necessary condition for classi-
cality of the underlying state. If Eq. (2) is violated by the
solutions of Eq. (4), the underlying state cannot be ex-
plained by a proper phase space probability distribution,
and one cannot assign a joint probability distribution to x
and p.

To demonstrate the absence of a joint probability distri-
bution, we are going to consider the phase space descrip-
tion of a single photon state. In phase space this can be
described by the first excited state of a harmonic oscillator,
which is rotationally invariant and contain negative parts in
the Wigner functions. Figure 1 shows the optimal func-
tional forms obtained for this state for low polynomial
orders. As higher order terms are included, the optimized
test function is increasingly probing the negative part ofW,
yielding a negative expectation value. We note that nega-
tive expectation values appear only from the fourth order

onward. This is because the peak of the test function at the
position of the negativity must be narrower than
Heisenberg’s uncertainty in order not to smear the nega-
tivity; this is in full agreement with Ref. [20].
The experimental demonstration is achieved with single

photons generated by a heralded cavity-enhanced nonde-
generate parametric down-conversion. The equivalence
between a single mode electromagnetic field and a har-
monic oscillator allows us to describe the EM field by a
phase space of a single degree of freedom. The down-
conversion process produces two photons, and as one is
detected as a trigger, the result is a single photon state
where the losses introduce a statistically mixed component
of vacuum. The projection measurements (quadratures) are
obtained by measuring the statistics of the noise, using an
optical homodyne detection scheme. In this scheme,
the weak investigated optical field is overlapped with a
strong laser pulse on a beam splitter, and the interference of
the two fields is detected and subtracted. The phase of the
strong laser field determines the angle � [Eq. (5)] of the
measured coordinate. Measurements were taken without
fixing the phase of the local oscillator, thus smearing the
resulting distribution. This enables us to treat the results as
rotationally invariant even if noninvariant features existed
prior to smearing. Such measurements will generate a
rotationally invariant reconstructed state for any underly-
ing state, but this does not necessarily average out nega-
tivities in the Wigner function [23]. For details of the
experimental setup and the characterization of the resulting
single photon see Ref. [24].

FIG. 1 (color online). Profiles of the test function F minimiz-
ing the expectation value hFi for the first excited state of a
quantum harmonic oscillator, as a function of the phase space
radius, for different orders N (see text) plotted against the profile
of the corresponding Wigner function. As the order of the
polynomial increases, the function becomes centered around
the negativity, decreasing elsewhere. In this case, negative ex-
pectation values are obtained starting at N ¼ 4. The inset shows
the polynomial order required to observe negative expectation
values as a function of the single-photon fractional content in a
mixture with vacuum. As the fraction of vacuum is increased, the
state approaches a classically describable state and higher mo-
ments are needed to observe the negativity.
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The data set contained 180 000 measured quadratures.
We have revised the optimization of the functional to also
account for statistical uncertainties inherent to a limited
data set. This is done by optimizing

G ¼ hFi
h�Fi ; (10)

where �F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihF2i � hFi2p
is the standard deviation of F.

The results are shown in Fig. 2. The fact that the expecta-
tion value for our test function is negative with certainty of
almost 20 standard deviations clearly demonstrates that the
measured state in this experiment cannot be explained by
classical theory, unambiguously negating the possibility of
the existence of a joint probability distribution for x and p.
The appearance of negative values from the 12th order
polynomials and higher indicate the quantum mechanical
description of this state in terms of a Wigner function
includes negative valued areas. We note that the minimized
function from Eq. (3) is monotonically decreasing for
increasing order N, and the onset of negativity at a certain
order therefore means that all higher orders will also be
negative. This suggests a sequential authentication proce-
dure for an unknown state. As mentioned above, for a pure
single photon state, negative expectation values are observ-
able from the fourth order polynomial onwards. The 12th
order polynomial required here is due to the vacuum
component of the field, requiring higher orders of the
polynomial as shown in the inset of Fig. 2, and is in
agreement with the results obtained in Ref. [24] reporting
a 62% fraction of single photon in the resulting mixed
state.

In conclusion, we have experimentally demonstrated
the nonexistence of a joint probability distribution of
two canonical variables. This is done by violation of an
inequality derived without the assumptions of quantum

mechanics, thus allowing for it as proof of the absence of
a classical description in systems not immediately evident
to display quantum behavior. The procedure used here
can thus provide a simple, practical tool for demonstrat-
ing the nonclassicality of a state based on quadrature
measurements, where the existence of a classical joint
distribution of two conjugated variables can be negated.
In this way, this procedure is closely linked to other
criteria [25–27] demonstrating contextuality of measure-
ments, and thus disproving the classical local hidden
variable view. Unlike Refs. [25–27], which are applicable
to discrete variables, the method demonstrated here ap-
plies for continuous variables such as position and mo-
mentum, collective spin operators [28], and quadrature
phase operators. This makes it useful to systems contain-
ing many particles, where criteria based on counting
particles are not easily implemented and interpreted.
This method complements the full tomographic recon-
struction techniques in that it is simpler and avoids nu-
merical complexities of inverse transformations. These
kinds of conceptual proofs, when extended to different
detection schemes, can shed more light on the quantum to
classical correspondence, especially where the control of
claimed macroscopic quantum states is in question.
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