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We provide evidence for a duality between color and kinematics in three-dimensional supersymmetric

Chern-Simons matter theories. We show that the six-point amplitude in the maximally supersymmetric

N ¼ 8 theory can be arranged so that the kinematic factors satisfy the fundamental identity of three-

algebras. We further show that the four- and six-point N ¼ 8 amplitudes can be squared into the

amplitudes of N ¼ 16 three-dimensional supergravity, thus providing evidence for a hidden three-

algebra structure in the dynamics of the supergravity.
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Introduction.—Scattering amplitudes have provided a
rich vein of insight into the hidden structures underlying
theories of gauge and gravitational interactions. One par-
ticularly suggestive result is the color-kinematics duality
discovered by Bern, Carrasco, and Johansson (BCJ) [1]. At
tree-level, color-dressed scattering amplitudes in Yang-
Mills (YM) theories can, quite generally, be written as a
sum over cubic graphs

A n ¼ gn�2
X

i2graphs

niciQ
‘i

p2
‘i

; (1)

where the ci’s are color structures made from the usual Lie
algebra structure constants, and the ni’s are kinematic
factors from which we have removed products of inverse
propagators p2

‘i
associated to internal lines of the respec-

tive cubic diagram. BCJ proposed that there exists a rep-
resentation of the amplitude such that for any set of color
structures related by a Jacobi identity, there is a corre-
sponding relation between their numerator factors:

cs þ ct þ cu ¼ 0 ) ns þ nt þ nu ¼ 0: (2)

This duality implies nontrivial relations between different
tree-level color-ordered subamplitudes, the so-called BCJ
relations [1].

Moreover, such Yang-Mills amplitudes can be used to
express tree-level scattering in related gravity theories via
the well-known Kawai-Lewellen-Tye (KLT) relations
[2,3]. BCJ [1,4] proposed that it is possible to express
gravity amplitudes in terms of the gauge theory data by
simply replacing the color factors by another copy of the
kinematic numerators and summing over the same cubic
diagrams.

Scattering amplitudes have also been recently studied in
the context of supersymmetric Chern-Simons matter theo-
ries. These theories are of great interest as they describe the
low-energy dynamics of multiple membranes and have
played an important role in recent studies of the AdS/
CFT correspondence including applications as toy models

for condensed matter physics. In this Letter, we propose,
and provide evidence for, a nontrivial analog of the color-
kinematics duality in the maximally supersymmetric case
and for a corresponding ‘‘double-copy’’ construction lead-
ing to E8ð8Þ symmetric, three-dimensional N ¼ 16 super-

gravity. This three-dimensional gravity is of particular
interest as it is related to the dimensional reduction of
N ¼ 8 four-dimensional gravity, and plays a key role,
after further reduction to two dimensions, in understanding
the classical ‘‘hidden symmetries,’’ e.g., [5,6], of this the-
ory, which in turn will likely be important in understanding
the quantum theory.
N ¼ 8 supersymmetric Chern-Simons scattering am-

plitudes.—The maximally supersymmetric Chern-Simons
theory, Bagger-Lambert-Gustavsson (BLG) theory, con-
structed in [7–9], is the unique three-dimensional gauge
theory with OSpð8j4Þ superconformal symmetry. The on-
shell physical states comprise eight scalars XI in the 8v and

eight fermions�
_I in the 8c of SOð8Þ. An important feature

of the original construction was the appearance of three-
algebras. Briefly, a three-algebra is a vector space Ta, a ¼
1; . . . ; N, with a trilinear product,

½Ta; Tb; Tc� ¼ fabcdT
d;

where the structure constants fabcd satisfy the fundamental

three-algebra identity,

fefgdf
abc

g¼fefagf
bcg

dþfefbgf
cag

dþfefcgf
abg

d: (3)

Moreover, there is a trace form, hab ¼ TrðTaTbÞ, which can
be used to raise and lower indices. The structure constants
with all indices raised are completely antisymmetric,

fabcd ¼ f½abcd�. All on-shell fields are three-algebra-valued
fundamental fields, e.g., XI ¼ P

N
a¼1ðXIÞaTa. The only

known finite-dimensional example is where the three-
algebra is four dimensional, while the structure constants
are proportional to the invariant four-index tensor
fa1a2a3a4 / �a1a2a3a4 .
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As we are interested in scattering amplitudes, it is con-
venient to make use of the spinor-helicity formalism,
whereby three-momenta are expressed as the product of
two-component real spinors [10]: p�� ¼ ����, where
�;� ¼ 1; 2. The on-shell fields can be grouped into a
single superfield [11], by introducing four Graßmann pa-
rameters �i; i ¼ 1; . . . ; 4. This construction breaks mani-
fest SOð8Þ R symmetry by rewriting the 8v scalars as

XI ¼ f �X; X½ij�; Xg and similarly for the fermions, �
_A ¼

fc i; �c
ig, so that the on-shell superfield is

�BLG ¼ �X þ �ic i þ 1

2
�ijkl�

i�jX½kl� þ 1

3!
�ijkl�

i�j�k �c l

þ 1

4!
�ijkl�

i�j�k�lX:

An OSpð8j4Þ invariant four-point scattering amplitude,

A 4 ¼ 4�i

k

�ð3ÞðPÞ�ð8ÞðQÞ
h12ih23ih31i fa1a2a3a4 ; (4)

has previously been constructed [13]. In this formula the

delta functions impose conservation of momenta, P�� ¼P
4
j¼1 p

��
j , and supermomenta, Q�i ¼ P

4
j¼1 �

�
j �

i
j, while

the kinematic invariants are defined as hjki ¼ ����
�
j �

�
k .

The overall form of the amplitude is fixed by the super-
conformal symmetries, while the normalization, dependence
on the Chern-Simons coupling k, and color structure are
fixed by the explicit Feynman diagram calculation of any
component amplitude.

Quite generally, we can write an n-point amplitude in
the BLG theory in the form (1), but with the ci correspond-
ing to three-algebra color structures [14]. The sum is now
over diagrams with quartic vertices, and the color struc-
tures are found by associating to each vertex a factor fabcd,
and to each internal line a metric hab. For example, Fig. 1
corresponds to cð123Þð456Þ :¼ fa1a2a3bhbcf

ca4a5a6 .

A key feature is that due to the fundamental identities (3)
not all of the color structures are independent. Namely,
given cs ¼ . . . fefgdf

abc
g . . . , ct ¼ . . . fefagf

bcg
d . . . ,

cu ¼ . . . fefbgf
cag

d . . . , and cv ¼ . . . fefcgf
abg

d . . . ,

where the ‘‘. . .’’ denote factors common to all diagrams,
it follows that cs ¼ ct þ cu þ cv. Our first proposal is that
corresponding numerators ns, nt, nu, and nv can always be
found such that (see Fig. 2)

cs ¼ ct þ cu þ cv ) ns ¼ nt þ nu þ nv: (5)

We do not have a general proof for these relations; instead,
we will provide evidence for their existence by considering
the first nontrivial case, i.e., six points.
At six points, all color structures consist of the contrac-

tions of two tensors as in Fig. 1. Accounting for the anti-
symmetry of fabcd, there are ten distinct color structures ci,
labeled by partitions of the six color labels into groups of
three, e.g., c1 ¼ cð123Þð456Þ [15]. There are five independent
three-algebra relations between the ten different color struc-
tures. Our claim is that there is a choice of numerators such
that they satisfy the same three-algebra fundamental identi-
ties. However, the numerators are not uniquely defined and
finding explicit forms is not straightforward. Instead, we
will show the existence of such numerators, and give a
recipe for calculating them, by considering the color-
ordered subamplitudes of N ¼ 6 Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory [16].
New relations for color-ordered subamplitudes.—As is

well known, the BLG theory can be rewritten [17] as a
special case (N ¼ 2) of the SUðNÞ � SUðNÞ N ¼ 6
Chern-Simons theories with bi-fundamental matter, which
are ABJM-theories. The ABJM on-shell fields can be

grouped into two superfields: �̂A
�A, transforming as (N; �N),

and �̂�
�B
B, transforming as ( �N;N) [18]. This formalism is

manifestlyUð3Þ symmetric, making use of three Graßmann

parameters �î; î ¼ 1; 2; 3. For N ¼ 2 the conjugate repre-
sentations are equivalent and the two superfields can be

combined: �BLG ¼ �̂þ �4 �̂�.
Scattering amplitudes in BLG theory can be found from

those of ABJM by identifying the appropriate fields and
color structures. ABJM scattering amplitudes can, how-
ever, be decomposed into color-ordered subamplitudes.
Each color-ordered subamplitude will contribute to several
kinematical coefficients of the BLG color structures ci. We
claim that every color-ordered ABJM subamplitude can be
written as a certain combination of numerators ni with
propagators, in such a way that the corresponding BLG
amplitudes take the form (1), with the numerators satisfy-
ing the three-algebra identities (5). This implies nontrivial
relations among the color-ordered ABJM subamplitudes
for any N, and thus is a slightly stronger claim than the
existence of three-algebra-satisfying numerators for BLG
amplitudes. In the following, we provide evidence for our
claim by examining the six-point amplitudes.
Four-point amplitudes in ABJM [19] were considered in

[20]; the six-point color-ordered subamplitudes for ABJM
were first calculated in [18] (see also [21]). As a represen-
tative component amplitude, we consider the six-point

FIG. 1. Six-point quartic diagram FIG. 2. Graphical expression of the fundamental identity
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amplitude involving a single flavor of a complex scalar

�ðpÞA�A and its conjugate ��ðpÞ �BB,

Â 6� ¼ Að1; 2; 3; 4; 5; 6Þ� �B2
�A1
�
A3

B2
�

�B4
�A3
�
A5

B4
�

�B6
�A5
�A1

B6
þ . . . ; (6)

with the ellipses denoting other color orderings.
At six points, we propose that the color-ordered ABJM

subamplitudes take the form

Aði; j; k; p; q; rÞ ¼ nðijkÞðpqrÞ
p2
ijk

þ nðqriÞðjkpÞ
p2
qri

þ nðrijÞðkpqÞ
p2
kpq

: (7)

There are six independent subamplitudes, all others are
related to those by cyclic double-shifts and by inversions,
i.e., Aðk; p; q; r; i; jÞ ¼ Aði; j; k; p; q; rÞ, Aði; r; q; p; k; jÞ ¼
Aði; j; k; p; q; rÞ. We will now give a recipe for constructing
numerators ni for which both (7) and the three-algebra
relations (5) hold. The latter can be satisfied by
setting n2 ¼n1þn3�n4; n8 ¼�n3þn6�n10; n5 ¼
n3�n4þn10; n9 ¼�n1�n3þn6; n7 ¼�n1�n3þ
n4þn6�n10. We determine four further numerators n3,
n4, n6, and n10 in terms of known amplitude expressions by
solving (7) for Að1; 2; 3; 4; 5; 6Þ, Að1; 2; 3; 6; 5; 4Þ,
Að1; 2; 5; 4; 3; 6Þ, and Að1; 4; 3; 6; 5; 2Þ. Plugging these nu-
merators into the remaining two relations (7), we obtain
nontrivial identities among the six subamplitudes and the
undetermined numerator n1. We express the two relations
as a six-term Uð1Þ-decoupling relation and a four-term
BCJ-type relation,

0 ¼ X
	;	0

A½1; 	ð2Þ; 	0ð3Þ; 	ð4Þ; 	0ð5Þ; 	ð6Þ�;

0 ¼ p2
123Að1; 2; 3; 4; 5; 6Þ þ s1Að1; 2; 5; 4; 3; 6Þ

þ s2Að1; 6; 3; 2; 5; 4Þ þ s3Að1; 6; 5; 2; 3; 4Þ;
where 	 2 Z3ð2; 4; 6Þ, 	0 2 Z2ð3; 5Þ, and the si’s are some
complicated kinematic factors. It is straightforward to
confirm these relations by choosing explicit numerical
values for the external momenta. This proves that the six-
point BLG amplitude can indeed be expressed in terms
of numerators satisfying the three-algebra relations.
Importantly, the undetermined kinematical factor n1 drops
out of the relations and thus corresponds to a generalized
gauge freedom analogous to that found in the YM case [1].

E8ð8Þ supergravity theory.—The three-dimensional

N ¼ 16 supergravity with E8ð8Þ symmetry (E8 theory),

originally constructed by Marcus and Schwarz [22], con-
sists of 128 scalar bosons and 128 fermions which are
inequivalent real spinor representations of SOð16Þ, the
maximal compact subgroup of E8ð8Þ. As is well known,

e.g., [23], this theory is related, on-shell, to the dimensional
reduction of four-dimensional N ¼ 8 supergravity with
E7ð7Þ symmetry (E7 theory) by performing a duality trans-

formation of all the vector fields into scalars, which then
combine with the scalars from dimensional reduction,
including those originally in the E7ð7Þ=SUð8Þ coset of the

N ¼ 8 supergravity, to become those of the E8ð8Þ=SOð16Þ
coset.
Thus, for fields which are unchanged by the duality

transformation, in particular the scalars originating in the
E7ð7Þ=SUð8Þ coset, the three-dimensional scattering ampli-

tudes are just those of the four-dimensional theory eval-
uated on three-dimensional kinematics. However, due to
the duality transformation this is not the case for all am-
plitudes; as a simple example, even for complex momenta,
there is no E8-theory three-point amplitude. Indeed, as
explained in [22], all nontrivial scattering amplitudes
must have an even number of external particles, as prod-
ucts of odd numbers of spinors cannot form a singlet.
The E8ð8Þ algebra comprises 120 compact SOð16Þ

generators XIJ; I; J ¼ 1; . . . ; 16, and 128 noncompact gen-
erators YA; A ¼ 1; . . . ; 128. It is convenient to fix the uni-
tary gauge, whereby a generic group element is written

as g ¼ e’
AYA

with ’A being the physical scalars. The
E8ð8Þ=SOð16Þ-coset action is constructed from the

algebra-valued current P
 ¼ 1
2 ðe�’@e’ � e’@e�’Þ.

The bosonic action is [22]

L bos ¼ 1

4�2

ffiffiffiffiffiffiffi�g
p

R� 1

4�2

ffiffiffiffiffiffiffi�g
p

g
�PA

P

A
�; (8)

where the first term is the usual gravity action. Using this
action (the fermionic terms are also known) with appro-
priate gauge fixing, one can straightforwardly calculate
scattering amplitudes using Feynman diagrams. At four
points such amplitudes for four scalars receive contribu-
tions from graviton exchange and from contact interactions
that arise upon expanding the coset term to quartic order in
the fields, L’4 � ð’�IJ@
’Þð’�IJ@
’Þ. In the simplest

case we can consider the scattering of four scalars all
carrying the same coset index, e.g., all fields being ’1, in
which case there is no contribution from contact terms.
Combining all graviton exchange diagrams we find

M4 ¼ i�2

4

�
s2 þ u2

t
þ t2 þ u2

s
þ s2 þ t2

u

�
: (9)

It is not difficult to calculate other component amplitudes;
however, we can make use of the supersymmetry to deter-
mine the full four-point superamplitude.
For the E8 theory we can define an on-shell superfield by

using eight Graßmann parameters 
I; I ¼ 1; . . . ; 8, which
breaks the SOð16Þ R symmetry to Uð8Þ. Splitting the 128
scalars ’A into the fields f�; ��; �IJ; ��

IJ; �IJKLg with, for
example � ¼ 1

2 ð’1 þ i’2Þ, and similarly for the fermionic

fields, we can write the superfield [24]

� ¼ �þ 
Ic I þ 1

2

I
J�IJ þ . . .þ 1

8!

8 ��:

By using super-Poincaré symmetry and matching to the
component amplitude, the four-point superamplitude is
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M 4 ¼ i�2

4

�ð16ÞðQÞ�ð3ÞðPÞ
ðh12ih23ih31iÞ2 : (10)

Here, the 16-dimensional fermionic delta function is given
by the product of two eight-dimensional fermionic delta

functions, �ð16ÞðQÞ � �ð8ÞðQ1Þ�ð8ÞðQ2Þ, such as appeared in
(4). Stripping off the overall normalization and momentum
delta function we see that this is the ‘‘square’’ of (4). This
then suggests a relation between N ¼ 8 BLG and the E8

theory analogous to that, due to KLT [2,3], between
N ¼ 4 supersymmetric Yang-Mills and the E7 supergrav-
ity theory. As zeroth-order checks, we note that the spectra
of the E8 theory and that of BLG theory squared match;
furthermore, in both cases all nontrivial amplitudes have an
even numbers of legs. As N ¼ 8 BLG theory can be
found from supersymmetric three-dimensional Yang-
Mills theory [25] via a Higgs mechanism reminiscent of
the duality transformation, it is perhaps not surprising that
it should be thus related to the E8 supergravity theory.

Three-dimensional gravity as the square of Chern-
Simons.—Given the suggestion that the BLG amplitudes
can be written in terms of numerators satisfying the three-
algebra color-kinematics duality, it is natural to ask if the
gravity theory amplitudes can be written as a ‘‘double-
copy’’ as in [1],

Mn ¼ i

�
�

2

�
n�2X

i

niniQ
‘i

p2
‘i

; (11)

where the ni’s are the numerators appearing in the BLG
amplitude (1) and the sum is over the same n-point quartic
diagrams. This relation obviously holds at four points for
the superamplitudes. At six points, we perform an explicit
check by making use of the numerators calculated from the
six-point color-ordered ABJM subamplitudes for specific

components: We use the pure scalar ABJM amplitude Â6�

(6) to calculate the numerators for A6ðX1
�X2X3

�X4X5
�X6Þ in

the BLG theory, and find that it indeed squares into the
M6ð�1

��2�3
��4�5

��6Þ gravity amplitude. The latter could, in
principle, be found by a direct Feynman diagram calcula-
tion. Instead, we take the complex scalar � to have origi-
nated in the E7ð7Þ=SUð8Þ coset, so that M6ð�1

��2�3
��4�5

��6Þ
can be obtained by dimensional reduction of the six-scalar
E7 supergravity amplitude. The latter can be found by
using the KLT relations [2,3] for a scalar component of
the known N ¼ 4 supersymmetric Yang-Mills next-to-
maximally helicity-violating amplitude [26]. It is then
straightforward to check, again by choosing a range of
numerical values for external momenta, that the resulting
pure scalar amplitude in fact agrees with the squared BLG
amplitude (11).

For higher-point amplitudes, it would be possible to
prove, along the lines of [27], that (11) holds if there were
Britto-Cachazo-Feng-Witten (BCFW) recursion relations
[28,29] for the E8 theory. Recursion relations for ABJM

theories, and thus BLG theory, have been proven in [21].
The key step is proving that the superamplitude falls off
sufficiently fast for large deformations of the momenta

under a complex nonlinear shift: Âðf�1ðzÞ; �lðzÞgÞ �
Oð1=zÞ as z ! 1with �1ðzÞ ¼ zþz�1

2 �1 � z�z�1

2i �l, �lðzÞ ¼
z�z�1

2i �1 þ zþz�1

2 �l, and similar shifts for the Graßmann

parameters. The proof of a sufficient falloff for E8 super-
amplitudes does not currently exist. However, it is possible
to naively apply the method of [21] and use the four-point
amplitude (10) to construct a candidate six-point superam-
plitude in E8 supergravity. We find that the relevant scalar
component, M6ð�1

��2�3
��4�5

��6Þ, of this superamplitude
agrees with the amplitude calculated by squaring the numer-
ators (11). This shows that at least to six points, the BCFW
recursion relations of [21] hold for the E8 theory.
Outlook.—In order to confirm the proposed ‘‘double-

copy’’ relations for the E8 theory, it would be very useful
to prove the BCFW relations for the three-dimensional
supergravity. Relatedly, numerator identities for YM and
squaring relations for gravity have been conjectured to
extend to all-loop diagrams [4], and it would be interesting
to check whether similar relations hold for the three-
dimensional Chern-Simons and gravity theories. If this
was the case, these relations would provide a useful prac-
tical tool for calculating amplitudes in three-dimensional
supergravity at loop level. They would furthermore demon-
strate the existence of a hidden three-algebra structure in
three-dimensional gravity. This is interesting both as a non-
trivial model for similar structures in four-dimensional grav-
ity and as an important intermediary step to understanding
the infinite ‘‘hidden symmetries’’ at the quantum level.
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