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Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background

(CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the

magnetic field. We compute a new measure of magnetic non-Gaussianity, the CMB trispectrum, on large

angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and

by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times

10�29 and 10�19, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us

to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial

cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic

fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power

spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on

large scales.
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Magnetic fields are ubiquitous in the Universe from
planets and stars to galaxies and galaxy clusters [1,2], yet
the origin and evolution of large-scale magnetic fields
remains a puzzle. A popular paradigm is that magnetic
fields in collapsed structures could arise from dynamo
amplification of seed magnetic fields [2]. The seed field
could in turn be generated in astrophysical batteries [3] or
due to processes in the early Universe [4,5]. Indeed recent
�-ray observations claim to find a lower limit to an all-
pervasive intergalactic magnetic field that fills most of the
cosmic volume [6], which would perhaps favor a primor-
dial origin. A primordial magnetic field can be generated at
inflation [4] or arise out of other phase transitions in the
early Universe [5]. As yet there is no compelling mecha-
nism which produces strong coherent primordial fields.
Equally, the dynamo paradigm is not without its own
challenges in producing sufficiently coherent fields and
sufficiently rapidly [2]. Therefore, it is useful to keep
open the possibility that primordial magnetic fields origi-
nating in the early Universe play a crucial role in explain-
ing the observed cosmic magnetism.

In this context it is important to investigate every ob-
servable signature of the putative primordial magnetic
fields. Constraints on large-scale primordial magnetic
fields have already been derived using the cosmic micro-
wave background (CMB) power spectrum [7,8] and
Faraday rotation [9]. However, the effects of a magnetic
field on the CMB are relatively more prominent in its non-
Gaussian correlations. This is because magnetic fields
induce non-Gaussian signals at lowest order as the mag-
netic energy density and stress are quadratic in the field.
On the other hand, the standard inflationary perturbations,
dominated by their linear component, can source

non-Gaussian correlations only with higher-order pertur-
bations and thus necessarily produce a small amplitude of
CMB non-Gaussianity (cf. [10,11]). Primordial magnetic
fields can induce appreciable CMB non-Gaussianity when
considering the bispectrum [12,13]. Our previous calcula-
tion of the magnetic CMB bispectrum sourced by scalar
anisotropic stress led to a �2 nG upper limit on the pri-
mordial magnetic field’s amplitude on Mpc scales [14].
However, higher-order measures of non-Gaussianity re-
main unexplored and, as we show here, could be very useful
to set further constraints on primordial magnetic fields.
In this Letter, we present the first calculation of the

contribution to the CMB trispectrum induced by a primor-
dial magnetic field. In particular, we consider the magneti-
cally induced Sachs-Wolfe effect sourced by a stochastic
primordial magnetic field. We show that the trispectrum
does significantly better than the bispectrum in constrain-
ing the large-scale magnetic field via CMB non-
Gaussianity, considering both magnetic energy density
and magnetic scalar anisotropic stress as sources. This
reveals a new and effective probe to investigate primordial
magnetic fields on large scales.
We consider a Gaussian random stochastic magnetic

fieldB characterized and completely specified by its power
spectrumMðkÞ. We further assume the magnetic field to be
nonhelical. On galactic and larger scales, any velocity
induced by Lorentz forces is generally too small to appre-
ciably distort the initial magnetic field [15]. Hence, the
magnetic field simply redshifts away as Bðx; tÞ ¼
b0ðxÞ=a2, where b0 is the magnetic field at the present
epoch (i.e., at z ¼ 0 or a ¼ 1). We define bðkÞ as the
Fourier transform of the magnetic field b0ðxÞ. The mag-
netic power spectrum is defined by the relation
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hbiðkÞb�j ðqÞi ¼ ð2�Þ3�ðk� qÞPijðkÞMðkÞ, where PijðkÞ ¼
ð�ij � kikj=k

2Þ is the projection operator ensuring r �
b0 ¼ 0. This leads to hb20i ¼ 2

Rðdk=kÞ�2
bðkÞ, where

�2
bðkÞ ¼ k3MðkÞ=ð2�2Þ is the power per logarithmic inter-

val in k space present in the stochastic magnetic field. We
assume a power-law magnetic power spectrum, MðkÞ ¼
Akn that has a cutoff at k ¼ kc, where kc is the Alfvén-
wave damping length scale [15]. We fix A by setting the
variance of the magnetic field to be B0, smoothed using
a sharp k-space filter, over a ‘‘galactic’’ scale kG ¼
1h Mpc�1. This gives (for n * �3 and for k < kc)

�2
bðkÞ ¼

k3MðkÞ
2�2

¼ B2
0

2
ðnþ 3Þ

�
k

kG

�
3þn

: (1)

The spectral index n is restricted to values close to and
above �3, i.e., an inflation-generated field, as causal gen-
eration mechanisms can only produce much bluer spectra
[16]. Further, blue spectral indices are strongly disfavored
by many observations like the CMB power spectra [7]. We
choose to split the contributions to the CMB trispectrum
into that sourced by magnetic energy density �B and by
scalar anisotropic stress �B rather than the compensated
and passive magnetic perturbation modes of Ref. [17]. The
subdominant compensated mode is a linear combination of
�B and �B, whereas the passive mode is the �B pertur-
bation considered here.

The Sachs-Wolfe type of contribution to the CMB tem-
perature anisotropy induced by the energy density of mag-
netic fields [18–20] can be expressed as

�T

T
ðnÞ ¼ R�Bðx0 � nD�Þ: (2)

Here, �BðxÞ¼B2ðx;tÞ=ð8���ðtÞÞ¼b20ðxÞ=ð8��0Þ, where
��ðtÞ and �0 are, respectively, the CMB energy densities at

a time t and at the present epoch. In the same manner as the
usual Sachs-Wolfe effect, the �T=T given above is for
large angular scales. For numerical estimates we use the
most recent estimate of Bonvin and Caprini (Eq. 6.12
of [20]) expressed according to our definitions as R ¼
�0:2R�=3��0:04, where R� � 0:6 is the fractional con-

tribution of radiation energy density towards the total
energy density of the relativistic component. The unit
vector n is along the direction of observation from the
observer at position x0 and D� is the (comoving angular
diameter) distance to the surface of last scattering. We have
assumed instantaneous recombination which is a good
approximation for large angular scales.

The temperature fluctuations of the CMB can be ex-
panded in terms of spherical harmonics to give
�TðnÞ=T ¼ P

lmalmYlmðnÞ, where

alm ¼ 4�

il

Z d3k

ð2�Þ3 R�BðkÞjlðkD�ÞY�
lmðk̂Þ: (3)

Here, �BðkÞ is the Fourier transform of �BðxÞ. Since
�BðxÞ is quadratic in b0ðxÞ, we have a convolution

�BðkÞ ¼ ½1=ð2�Þ3�R d3sbiðkþ sÞb�i ðsÞ=ð8��0Þ. The tris-
pectrum Tm1m2m3m4

l1l2l3l4
, or the four-point correlation function

of the CMB temperature anisotropy in harmonic space, in
terms of the alm’s, is Tm1m2m3m4

l1l2l3l4
¼ hal1m1

al2m2
al3m3

al4m4
i.

From Eq. (3) we can express T
m1m2m3m4

l1l2l3l4
as

T
m1m2m3m4

l1l2l3l4
¼
�
R
2�2

�
4 Z �Y4

i¼1

d3ki
ili

jliðkiD�ÞY�
limi

ðk̂iÞ
�
�1234;

(4)

with �1234 ¼ h�Bðk1Þ�Bðk2Þ�Bðk3Þ�Bðk4Þi. The four-
point correlation function of�BðkÞ involves an eight-point
correlation function of the fields. Using Wick’s theorem,
for Gaussian magnetic fields, we can express the magnetic
eight-point correlation as a sum of 105 terms involving the
magnetic two-point correlation. Neglecting the 45 terms
proportional to �ðkÞ that vanish and the 12 terms propor-
tional to �ðki þ kjÞ that represent the unconnected part of

the four-point correlation, we are left with 48 terms. A long
calculation involving the relevant projection operators
gives �1234 ¼ �ðk1 þ k2 þ k3 þ k4Þc 1234, where c 1234 is
a mode-coupling integral over a variable s and also in-
volves angular terms. The full expression for c 1234 will be
presented in our detailed paper [21]. For simplicity we
evaluate the mode-coupling integral c 1234 in two cases:
(i) considering only s-independent angular terms for all
equal-sided configurations and (ii) taking all angular terms
for the collinear configuration. Considering s-independent
terms only for a general configuration, we find c 1234 ¼
�8=ð8��0Þ4I , where

I ¼
Z

d3sMðsÞMðjk1 þ sjÞ
� fMðjk1 þ k3 þ sjÞ½Mðjk2 � sjÞ þMðjk4 � sjÞ�
þMðjk1 þ k2 þ sjÞ½Mðjk3 � sjÞ þMðjk4 � sjÞ�
þMðjk1 þ k4 þ sjÞ½Mðjk2 � sjÞ þMðjk3 � sjÞ�g

¼ I ð1Þ þ I ð2Þ þ I ð3Þ þ I ð4Þ þ I ð5Þ þ I ð6Þ: (5)

We perform the mode-coupling integral using the tech-
nique and approximations discussed in [14,22], while

adopting the mean (zero) value of k̂1 � k̂3, to find

I ð1Þ ’ 4�A4k2nþ3
1 kn2k

n
3

�
2n=2

nþ 3
� 1

4nþ 3

�
: (6)

The value of each of the I ðjÞ integrals for j ¼ 1–6 is the

same when all the jkij ’ k. We perform the s-independent
[case (i)] trispectrum evaluation for such equal-sided quad-

rilateral configurations. Hence, I ¼ Pð6Þ
j¼ð1Þ I j ¼ 6I ð1Þ,

and we obtain

�1234 ’ �ðk1 þ k2 þ k3 þ k4Þ�8ð24�ÞA4k2nþ3
1 kn2k

n
3

ð8��0Þ4

�
�ð2n=2Þð4nþ 3Þ � ðnþ 3Þ

ð4nþ 3Þðnþ 3Þ
�
: (7)
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Inserting this into Eq. (4) for the trispectrum and following the approach of [23], we decompose our delta function as
�ðk1 þ k2 þ k3 þ k4Þ ¼

R
d3K�ðk1 þ k2 þ KÞ�ðk3 þ k4 � KÞ. Using the integral form of the delta functions and the

spherical wave expansion we perform the integrations over the angular parts of ðk1; k2; k3; k4;KÞ, with algebra similar to
[12,14,24], to give

T
m1m2m3m4

l1l2l3l4
’
�ð�768ÞðARÞ4

�7ð8��0Þ4
��ð2n=2Þð4nþ 3Þ � ðnþ 3Þ

ð4nþ 3Þðnþ 3Þ
� Z �Y4

i¼1

dkik
2
i jliðkiD�Þjliðki �riÞ

�
k2nþ3
1 ðk2k3Þn

X
LM

ð�1ÞL�M

�
Z

dKK2jLðKr1ÞjLð�Kr2Þ
Z �Y2

i¼1

d3riYl2i�1m2i�1
ðr̂iÞYl2im2i

ðr̂iÞYLð�1Þiþ1Mðr̂iÞ
�
; (8)

with �ri equal to r1 for i ¼ 1; 2 and r2 for i ¼ 3; 4. The approximations involved (with respect to angular terms) in the k̂i
angular integrals can be made more precise by going to the flat-sky limit (elaborated in our detailed paper [21]). Here theK
integral gives �ðr1 � r2Þð�=2r21Þ via the spherical Bessel function closure relation. This delta function enables us to
perform the r2 integral trivially, then r1 replaces r2 in the arguments of jl3 and jl4 . The angular r̂1 and r̂2 integrals may be
expressed as [e.g. Eq. 5.9.1 (5) of [25]]

Z
d�r̂1Yl1m1

ðr̂1ÞYl2m2
ðr̂1ÞYLMðr̂1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4�

s
l1 l2 L

0 0 0

 !
l1 l2 L

m1 m2 M

 !

� hl1Ll2
l1 l2 L

m1 m2 M

 !
; (9)

where we have defined hl1Ll2 above, along the same
lines as [23]. We use the relation ðA=8��0Þ4 ¼
ð2=3Þ4ð�=kGÞ8½ðnþ 3Þ=knþ1

G �4V8
A, where the Alfvén veloc-

ity VA, in the radiation dominated era, is defined as VA ¼
B0=ð16��0=3Þ1=2 � 3:8� 10�4B�9 [15], with B�9 �
ðB0=10

�9 GÞ. From the definition of the rotationally in-
variant angle-averaged trispectrum [26]

Tm1m2m3m4

l1l2l3l4
¼ X

LM

ð�1Þ�M l1 l2 L
m1 m2 �M

� �

� l3 l4 L
m3 m4 M

� �
Tl1l2
l3l4

ðLÞ; (10)

we separate out the reduced trispectrum Tl1l2
l3l4

ðLÞ (called the
angular averaged trispectrum in [26]) from the full trispec-
trum. We again use the spherical Bessel function closure
relation to perform the k4 integral that yields �ðr1 �D�Þ�
ð�=2r21Þ. This facilitates the r1 integral that results in
r1 ! D� in the arguments of jl1 , jl2 , and jl3 . The k1, k2,
and k3 integrals containing a product of a power law and j2l
can be evaluated in terms of Gamma functions (e.g.,
Eq. 6.574.2 of [27]). For a scale-invariant magnetic index
n ! �3, we get

½Tl1l2
l3l4

ðLÞ�� ’ �5:8� 10�29

�
nþ 3

0:2

�
3
�
B�9

3

�
8

� hl1Ll2hl3Ll4
l1ðl1 þ 1Þl2ðl2 þ 1Þl3ðl3 þ 1Þ : (11)

This gives us the amplitude of the magnetic CMB trispec-
trum sourced by the energy density �B of a primordial
magnetic field. A factor of 1=ðD�kGÞ4ðnþ3Þ also appears
which approaches unity for the case n ! �3 of a scale-
invariant magnetic field index. We evaluate the magnetic

trispectrum for a near scale-invariant index n ¼ �2:8, for
which this factor is �1=1500. It turns out that this factor
is almost entirely cancelled by the increase in value of
the k integrals when evaluated for n ¼ �2:8 rather than
n ¼ �3 [21].
We now compare our magnetic trispectrum with the

Sachs-Wolfe contribution to the standard CMB trispectrum
sourced by nonlinear terms in the inflationary perturbations
[23,28]. More specifically, in the Sachs-Wolfe limit, the
dominant term of Eq. (64) of Ref. [29] becomes

Tl1l2
l3l4

ðLÞ � 25�NLC
SW
l2

CSW
l4

CSW
L hl1Ll2hl3Ll4

� 5:4� 10�27�NL

hl1Ll2hl3Ll4
l1ðl1 þ 1Þl2ðl2 þ 1Þl3ðl3 þ 1Þq:

(12)

Here �NL and fNL (below) are standard non-Gaussianity
parameters and we adopt the standard estimate for the
Sachs-Wolfe contribution CSW

l [23]. The factor q which

is equal to ½l1ðl1 þ 1Þl3ðl3 þ 1Þ�=½l4ðl4 þ 1ÞLðLþ 1Þ� is of
order unity for many configurations. Equation (12) is of the
same form as Eq. (11) for the magnetic field-induced
trispectrum. We use the negative-sided limit on �NL

derived from searching for the CMB trispectrum signal
in the WMAP5 data [29], �NL >�6000. Magnetic field
limits are obtained by taking the one-eighth power of the
appropriate ratio of trispectra, which gives B0 & 16 nG, at
a scale of kG ¼ 1h Mpc�1 for a magnetic spectral index of
n ¼ �2:8. This limit is approximately 2 times stronger
than the B0 & 30 nG upper limit for the magnetic energy
density bispectrum [12] (taking into account the recent
estimate of R [20]), for the same scale and magnetic
index.
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We now calculate the trispectrum for the collinear con-
figuration [case (ii)]. The full mode-coupling integral
c 1234 [21] is evaluated over all angular terms for the
equal-sided collinear configuration k1’k2’�k3’�k4.
The four-point correlation of magnetic energy density for
the collinear configuration is found to be

�1234 ’ �ðk1 þ k2 þ k3 þ k4Þ 8ð4�ÞA
4k2nþ3

1 kn2k
n
3

ð8��0Þ4

�
�8
3 ð2n=2Þð4nþ 3Þ � ð12Þðnþ 3Þ

ð4nþ 3Þðnþ 3Þ
�
: (13)

Using n ¼ �2:8, we compare the collinear configuration
four-point correlation � , including all angular terms, to �
for case (i) [Eq. (7)] that included only s-independent
terms. The collinear � is similar in magnitude but of
positive sign and one then expects a trispectrum also of
similar magnitude to case (i).

In addition to magnetic energy density, the scalar aniso-
tropic stress associated with a primordial magnetic field
will also act as a separate source for CMB fluctuations—
dominantly in the passive mode [17]. As we saw in our
previous work [14], the magnetic scalar anisotropic stress
generates �106 times larger contribution to the CMB
bispectrum compared to magnetic energy density. With
this motivation and using the magnetic trispectrum tech-
nique, developed above for energy density, we carry out a
longer calculation for the trispectrum. The temperature
anisotropy, sourced via the magnetic Sachs-Wolfe effect
by magnetic scalar anisotropic stress �B [defined in
Eq. (6) of [14], see also [17,20]], is

�T

T
ðnÞ ¼ Rp�Bðx0 � nD�Þ; (14)

where Rp ¼ ½�R�=15� lnðTB=T�Þ and TB and T� are the

temperatures at the epochs of magnetic field generation
and of neutrino decoupling, respectively.

For the magnetic scalar anisotropic stress trispectrum,
R in Eq. (4) gets replaced by Rp and �1234 becomes

½�1234�� ¼ h�Bðk1Þ�Bðk2Þ�Bðk3Þ�Bðk4Þi. The full tech-
nical details of the calculation of the magnetic scalar
anisotropic stress trispectrum will be presented separately
[21]. We give below the results considering only the
s-independent angular mode-coupling terms for equal-
sided configurations. In this case

½�1234�� ’ �ðk1 þ k2 þ k3 þ k4Þ34� 8ð24�ÞA
4k2nþ3

1 kn2k
n
3

ð8��0Þ4

�
�ð2n=2Þð4nþ 3Þ � ðnþ 3Þ

ð4nþ 3Þðnþ 3Þ
�
: (15)

Here, � is a configuration-dependent number that is the
sum of all s-independent angular terms. This sum involves

terms like 	ab ¼ k̂a � k̂b that are constant for a given
(k1; k2; k3; k4) configuration. Values for � range between
2 and 14 for equal-sided trispectrum configurations: col-
linear, square, rhombus, and tetrahedron. We adopt a typi-
cal value � ’ 10. This leads to a reduced trispectrum

½Tl1l2
l3l4

ðLÞ�� ’
�
3
Rp

R

�
4
�½�Tl1l2

l3l4
ðLÞ��

’ 1:1� 10�19

�
�

10

��
nþ 3

0:2

�
3
�
B�9

3

�
8

� hl1Ll2hl3Ll4
l1ðl1 þ 1Þl2ðl2 þ 1Þl3ðl3 þ 1Þ : (16)

We have used TB ’ 1014 GeV (corresponding to the re-
heating temperature) and T� ’ 10�3 GeV. We see that the
amplitude of the trispectrum sourced by �B for equal-
sided quadrilateral configurations is approximately 1010

times larger than that sourced by �B. Comparison with
the trispectrum from inflationary perturbations [Eq. (12)]
gives a magnetic field constraint of

B0 & 1:3 nG; (17)

using the positive-sided limit �NL < 33 000 from WMAP5
data [29]. This is approximately twice as strong as the
2.4 nG B0 limit obtained from the �B bispectrum [14]
and does not assume any particular model of inflation or
any relation between �NL and fNL. However, for those
theories of inflation, which lead to �NL ¼ ð6=5fNLÞ2
[10,30], we could perhaps use the relatively tighter limits
for fNL. To be conservative we take the two-sigma limits
�10< flocalNL < 74 on the best constrained local fNL, ob-
tained from searching for the CMB bispectrum signal in
WMAP7 data [31]. This gives primordial magnetic field
limits of

B0 & 0:7 nG and B0 & 1:1 nG; (18)

respectively, for the negative and positive flocalNL limits. If

one uses the two-sigma limits for fequilNL , then the 0.7 nG

limit becomes 0.6 nG and for forthogNL it becomes 1.5 nG.
However, the uncertainties 
fNL

for equilateral and or-

thogonal configurations are 7 and 5 times larger compared
to the local configuration [31]. Staying with the best de-
termined flocalNL limits thus results in sub-nG upper limits on
B0. The expected �fNL < 5 [11] from Planck data will
imply even tighter sub-nG magnetic field upper limits from
the scalar anisotropic stress trispectrum. Future considera-
tion of magnetic vector and tensor modes in the trispectrum
is likely to give additional constraints on primordial mag-
netic fields.
In summary, we have calculated for the first time the

CMB trispectrum sourced by primordial magnetic fields.
The magnetic energy density trispectrum allows us to place
stronger limits on the primordial magnetic field compared
to a similar calculation with the magnetic energy density
bispectrum [12,13]. Further, the trispectrum due to mag-
netic scalar anisotropic stress leads to the tightest con-
straint on large-scale magnetic fields of �0:7 nG,
approximately 3 times as strong as the corresponding
bispectrum limit (� 2:4 nG) [14]. The trispectrum’s
sensitivity is illustrated by the magnetic to inflationary
trispectrum ratio, which is �103 compared to �1 for
the bispectrum (taking fNL � 100 and B0 � 3 nG).
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The relative contribution of different configurations to the
trispectrum is different for magnetic compared to infla-
tionary trispectra and will be useful to distinguish between
them. We also note that the magnetic field limit at Mpc
scales derived from only the scalar magnetic CMB trispec-
trum is already better than the limit (� 2–6 nG) [7] from
the combined scalar, vector, and tensor modes in the mag-
netic CMB power spectrum. Therefore, the trispectrum
turns out to be a new and more powerful probe of large-
scale primordial magnetic fields.
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