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Recently, anomalous superdiffusion of ultracold 87Rb atoms in an optical lattice has been observed

along with a fat-tailed, Lévy type, spatial distribution. The anomalous exponents were found to depend on

the depth of the optical potential. We find, within the framework of the semiclassical theory of Sisyphus

cooling, three distinct phases of the dynamics as the optical potential depth is lowered: normal diffusion;

Lévy diffusion; and x� t3=2 scaling, the latter related to Obukhov’s model (1959) of turbulence. The

process can be formulated as a Lévy walk, with strong correlations between the length and duration of the

excursions. We derive a fractional diffusion equation describing the atomic cloud, and the corresponding

anomalous diffusion coefficient.
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Recently, Sagi et al. [1] studied experimentally the
diffusion of ultracold 87Rb atoms in a one-dimensional
optical lattice undergoing Sisyphus cooling [2]. Starting
with a narrow atomic cloud they recorded the time evolu-
tion of the density of the particles, here denoted Pðx; tÞ
(normalized to unity). As predicted theoretically by
Marksteiner et al. [3], the diffusion of the atoms was not
Gaussian, so that the assumption that the diffusion process
obeys the standard central limit theorem is not valid here.
An open challenge is to determine the precise nature of
the nonequilibrium spreading of the atoms, in particular the
dynamical phase diagram upon variation in the depth of
the optical potential. In Ref. [1], the data were compared to
the set of solutions of the fractional diffusion equation [4–6],

@�Pðx; tÞ
@t�

¼ K�r�Pðx; tÞ; (1)

with � ¼ 1, so that the time derivative is a first-order
derivative [7]. The fractional space derivative is a Weyl-
Rietz fractional derivative [6]. The anomalous diffusion
coefficient K� has units of cm�= sec . A fundamental chal-
lenge is to derive fractional equations from a microscopic
theory, without invoking power-law statistics in the first
place. Furthermore, the solutions of such equations exhibits
a diverging mean-square displacement hx2i ¼ 1, which
violates the principle of causality [8], that constrains physical
phenomena to spread at finite speeds. So how can fractional
equations like Eq. (1) describe physical reality? We will
address this paradox in this work.

The solution of Eq. (1) for an initial narrow cloud is
given in terms of a Lévy distribution (see details below).
The Lévy distribution generalizes the Gaussian distribution
for the sum of a large number of independent random
variables to the case where the variance of summands
diverges, corresponding physically to scale free systems.
Lévy statistics and fractional kinetic equations have found
several applications [6,9–16], including in the context of
subrecoil laser cooling [17]. Here our aim is to derive Lévy

statistics and the fractional diffusion equation from the
semiclassical picture of Sisyphus cooling. Specifically we
will show that � ¼ 1 and relate the value of the exponent �
to the depth of the optical latticeU0, deriving an expression
for the constant K�. We discuss the limitations of the
fractional framework, and show that for a critical value
of the depth of the optical lattice, the dynamics switch to a
non-Lévy behavior [i.e., a regime where Eq. (1) is not
valid]; instead it is related to Richardson-Obukhov diffu-
sion found in turbulence. Thus the semiclassical picture
predicts a rich phase diagram for the atomistic diffusion
process. We will then compare the results of this analysis
to the experimental findings, and see that there are still
unresolved discrepancies between the experiment and the
theory. Reconciling the two thus poses a major challenge
for the future.
Model and goal.—In this article we investigate the spa-

tial density of the atoms, Pðx; tÞ. The trajectory of a single
particle is xðtÞ ¼ R

t
0 pðtÞdt=mwhere pðtÞ is its momentum.

Within the standard semiclassical picture [2,3], two com-
peting mechanisms describe the dynamics. The cooling
force FðpÞ ¼ � ��p=½1þ ðp=pcÞ2� acts to restore the mo-
mentum to the minimum energy state p ¼ 0. Momentum
diffusion is governed by a diffusion coefficient which is
momentum dependent, DðpÞ ¼ D1 þD2=½1þ ðp=pcÞ2�.
The latter describes momentum fluctuations which lead
to heating (due to random emission events). We use di-
mensionless units, time t ! t ��, momentum p ! p=pc,
the momentum diffusion constant D ¼ D1=ðpcÞ2 ��, and
x ! xm ��=pc. For simplicity, we set D2 ¼ 0 since it does
not modify the asymptotic jpj ! 1 behavior of the diffu-
sive heating term nor that of the force, and therefore does
not modify our main conclusions. The Langevin equations

dp

dt
¼ FðpÞ þ ffiffiffiffiffiffiffi

2D
p

�ðtÞ; dx

dt
¼ p; (2)

describe the dynamics in phase space. Here the noise
term is Gaussian, has zero mean, and is white;
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h�ðtÞ�ðt0Þi ¼ �ðt� t0Þ. The now dimensionless cooling
force is

FðpÞ ¼ � p

1þ p2
: (3)

The stochastic Eq. (2) is equivalent to the Fokker-Planck
equation derived from microscopical considerations [2,3].
This derivation givesD ¼ cER=U0, whereU0 is the depth of
the optical potential and ER is the recoil energy, and the
dimensionless parameter c [18] depends on the atomic
transition involved [2,3,19]. For p � 1, the cooling force
ofEq. (3) is harmonic,FðpÞ � �p, while forp � 1,FðpÞ�
�1=p. The effective potential VðpÞ¼�Rp

0FðpÞdp¼
ð1=2Þlnð1þp2Þ is asymptotically logarithmic, VðpÞ �
lnðpÞ when p is large. This large p behavior of VðpÞ is
responsible for several unusual equilibrium and nonequilib-
rium properties of the momentum distribution [20–23] while
the new experiment [1] demands a theory for the spatial
spreading.

The heart of our analysis is the mapping of the
Langevin dynamics to a recurrent set of random walks.
The particle along its stochastic path in momentum
space crosses p ¼ 0 many times when the measurement
time is long. Let � > 0 be the random time between one
crossing event to the next crossing event, and let �1<
�<1 be the random displacement (for the correspond-
ing �). As schematically shown in Fig. 1, the process
starting at the origin with zero momentum is defined by
the sequence of jump durations, f�ð1Þ; �ð2Þ; . . .g with

corresponding displacements f�ð1Þ;�ð2Þ;...g, with �ð1Þ�R�ð1Þ
0 pð�Þd�, �ð2Þ�R�ð1Þþ�ð2Þ

�ð1Þ pð�Þd�, etc. The total dis-

placement x at time t is a sum of the individual displace-
ments �ðiÞ. Since the underlying Langevin process is
continuous, we need a more precise definition of this
process. We define � as the time it takes the particle with

initial momentum pi to reach pf ¼ 0 for the first time,

where eventually we take pi ! pf. Similarly, � is the

displacement of the particle during this flight. The
probability density function (PDF) of the displacement
� is denoted qð�Þ and of the jump durations, gð�Þ.
As shown by Marksteiner et al. [3], these PDFs exhibit

power-law behavior

gð�Þ / ��ð3=2Þ�ð1=2DÞ; qð�Þ / j�j�ð4=3Þ�ð1=3DÞ; (4)

as a consequence of the logarithmic potential, which makes
the diffusion for large enough p only weakly bounded. It is
this power-law behavior, with its divergent second moment
of the displacement � for D> 1=5, that gives rise to the
anomalous statistics for x. Importantly, and previously
overlooked, there is a strong correlation between the
jump duration � and the spatial extent of the jumps �.
These correlations have important consequences, including
the finiteness of the moments of Pðx; tÞ and the D> 1
dynamical phase we obtain below. Physically, such a cor-
relation is obvious, since long jump durations involve large
momenta, which in turn induce a large spatial displace-
ment. The joint probability density of � and �, c ð�; �Þ,
will allow us to construct a Lévy walk scheme [24–26]
which relates the microscopic information c ð�; �Þ to the
atomic packet Pðx; tÞ for large x and t.
Scaling theory for anomalous diffusion.—We rewrite the

joint PDF c ð�; �Þ ¼ gð�Þpð�j�Þ, where pð�j�Þ is the con-
ditional probability to find a jump length of � for a given
jump duration �. Numerically, as shown in Fig. 2, we
observed that the conditional probability scales at large
times like

pð�j�Þ � ���Bð�=��Þ (5)

with � ¼ 3=2, and Bð�Þ is a scaling function. To analyti-
cally obtain the scaling exponent � ¼ 3=2 note that
qð�Þ ¼ R1

0 d�c ð�; �Þ, giving

0 200 400 600 800
t

-20

-15

-10

-5

0

5

10

15

p

τ(1)
τ(2)

τ(3) τ(4)

χ(4)χ(4)χ(4)

χ(3)

χ(2)

χ(1)

FIG. 1 (color). Schematic presentation of momentum of the
particle versus time. The times between consecutive zero cross-
ings are called the jump durations � and the shaded areas under
each excursion are the random flight displacements �. The �’s
and the �’s are correlated, since statistically a long jump
duration implies a large displacement.
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FIG. 2 (color). The scaled conditional probability
ð2D�Þ3=2pðj�jj�Þ versus j�j=ð2D�Þ3=2 for � ¼ 104, 105, and 106,
for the case D ¼ 0:4, from simulations, showing the convergence
to an asymptotic scaling form. Also shown is theD ! 1 limit for
� ¼ 104, as well as the analytic result for � ! 1, the Airy distri-
bution [30,31].
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qð�Þ�
Z 1

�0

d���ð3=2Þ�ð1=2DÞ���B

�
�

��

�
/j�j�ð1þð1þ1=DÞ=2�Þ:

(6)

Here �0 is a time scale after which the long time limit in
Eq. (4) holds and is irrelevant for large �. Comparing
Eq. (6) to the second equation of Eq. (4) yields the con-
sistency condition 1þ ð1þ 1=DÞ=ð2�Þ ¼ 4=3þ 1=ð3DÞ
and hence � ¼ 3=2, as we observe in Fig. 2.

It is interesting to note that pð�j�Þ in the case of free
diffusion (corresponding to the limit D ! 1) has been
previously considered by mathematicians [27–29] in the
context of the probability density for the area under a
Brownian excursion and shown to obey the scaling relation
Eq. (5), with B given by the so-called Airy distribution
[30,31]. In the case of finite D, an analytic formula for
pð�j�Þ can be constructed using the Feynman-Kac formal-
ism [32], giving for asymptotically long walks both
� ¼ 3=2 and a closed form expression for the scaling
function Bð�Þ. For our current purposes, however, we do
not need the exact form of B; what is important is the
scaling behavior, and the fact that B falls of rapidly for
large arguments, ensuring finite moments of this function.

Given our scaling solution for pð�jtÞ, and hence c ð�; tÞ,
the next step is to construct a theory for the spreading of
the particle packet using tools developed in the random
walk community [24–26]. One first obtains [32] a
Montroll-Weiss [6] type of equation for the Fourier-

Laplace transform of Pðx; tÞ, ~Pðk; uÞ, in terms of ~c ðk; uÞ,
the Fourier-Laplace transform of the joint PDF c ð�; �Þ:

~Pðk; uÞ ¼ �ðk; uÞ
1� ~c ðk; uÞ : (7)

Here, �ðk; uÞ is the Fourier-Laplace transform of

��3=2Bðj�j=�3=2Þ½1� R
t
0 gð�Þd��. The last step is then to

invert Eq. (7) back to the (x, t) domain.
We now explain why Lévy statistics describe the diffu-

sion profile Pðx; tÞ when 1=5<D< 1, provided that x is
not too large. The key idea is that, for x’s which are large,
but not extremely large, the problem decouples, and
~c ðk; uÞ can be expressed as a product of the Fourier trans-
form of qð�Þ, ~qðkÞ, and the Laplace transform of gð�Þ, ~gðuÞ.
This is valid as long as x � t3=2, since otherwise paths

where �� t3=2 are relevant, for which the correlations are
strong, as we have seen. The long-time, large-x behavior of
Pðx; tÞ in the decoupled regime is then governed by the
small-k behavior of ~qðkÞ and the small-u behavior of ~gðuÞ.
When the second moment of qð�Þ diverges, i.e., for D>
1=5, the small-k behavior of ~qðkÞ is determined by the
large-� asymptotics of qð�Þ as given in Eq. (5), qð�Þ �
x��=j�j1þ�, where we have introduced the parameter

� � 1þD

3D
: (8)

When the first moment of � is finite, i.e., for D< 1, the
small-u behavior of ~gðuÞ is determined by the first moment,

h�i: ~gðuÞ � 1� uh�i. From these follow the small-k,
small-u behavior of ~Pðk; uÞ:

~Pðk; uÞ � 1

uþ K�jkj� ; (9)

where K� ¼ 	x��=ðh�i�ð1þ �Þ sin	�2 Þ. Both x�� and h�i can
be calculated via appropriate backward Fokker-Planck
equations. They both vanish as the magnitude of the initial
momentum of the walk goes to zero, but their ratio has a
finite limit, so that K�, upon returning to dimensionful
units, is

K� ¼
ffiffiffiffi
	

p ð3�� 1Þ��1�ð3��1
2 Þ

�ð3��2
2 Þ32��1½�ð�Þ�2 sinð	�2 Þ

�
pc

m

�
�ð ��Þ��þ1: (10)

~Pðk; uÞ, as given in Eq. (9), is in fact precisely the symmetric
Lévy distribution in Laplace-Fourier space with index �,
whose (x, t) representation is [see Eq. (B17) of [10] ]

Pðx; tÞ � 1

ðK�tÞ1=�
L�;0

�
x

ðK�tÞ1=�
�
: (11)

It is easy to see that this distribution is the solution of the
fractional diffusion equation, Eq. (1), with � ¼ 1 and an
initial distribution located at the origin. This justifies the use
of Eq. (1) in Ref. [1] for 1=5<D< 1 and provides � and
K� in terms of the experimental parameters. We can verify
this behavior in simulations, as shown in the upper panel of
Fig. 3, where we see excellent agreement to our theoretical
prediction, Eqs. (11) and (10).
The lower panel of Fig. 3 illustrates the cutoff on the Lévy

distribution, which is found at distances x� t3=2. Beyond
this length scale, the density falls off rapidly. This, as noted
above, is the result of the correlation between � and �, as
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FIG. 3 (color). Upper panel: t1=�Pðjxj; tÞ versus jxj=t1=� for
D ¼ 2=5, i.e., � ¼ 7=6. The theory [Lévy PDF from Eq. (11)
with K� from Eq. (10)] perfectly matches simulations without
fitting. Lower panel: tð1þ3�Þ=2Pðjxj; tÞ versus jxj=t3=2 for
D ¼ 2=5, showing the universal crossover from power-law to
Gaussian behavior at jxj � t3=2.
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there are essentially no walks with a displacement greater

than the order of t3=2. This cutoff ensures the finiteness of
the mean square displacement; using the power-law tail of

the Lévy PDF L�ðxÞ�x�ð1þ�Þ and the cutoff we get hx2i ’R
t3=2 t�ð1=�Þðx=t1=�Þ�ð1þ�Þx2dx� t4�3�=2, for 2=3<�<2, in

agreement with Ref. [33]. As noted in the introduction, if
we naively rely on the fractional diffusion equation, Eq. (1),
we get hx2i ¼ 1. Thus the fractional equation must be used
with care, realizing its limitations in the statistical descrip-
tion of the moments of the distribution and its tails. When
D< 1=5, the diffusion is normal since the variance of � is
finite.

The Obukhov-Richardson phase, D> 1—When the
average jump duration, h�i, diverges, i.e., for D> 1, the
dynamics of Pðx; tÞ enters a new phase. Since the Lévy
index � approaches 2=3 as D approaches 1, x scales like

t3=2 in the limit. Due to the correlations, x cannot grow

faster than this, so in this regime Pðx; tÞ � t�3=2hðx=t3=2Þ,
which clearly describes a correlated phase. This scaling is
that of free diffusion, namely the momentum diffuses like

p� t1=2 and hence the time integral over the momentum

scales like x� t3=2. Indeed, in the absence of the logarith-
mic potential, namely in the limit D � 1 Eq. (2) gives

Pðx; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

4	Dt3

s
exp

�
� 3x2

4Dt3

�
: (12)

This limit describes the Obukhov model for a tracer parti-
cle path in turbulence, where the velocity follows a simple
Brownian motion [34,35]. These scaling properties are
related to Kolmogorov’s theory of 1941 {see Eq. (3) in
Ref. [35]} and to Richardson’s diffusion hx2i � t3 [33,36].
Equation (12) is valid when the optical potential depth is
small since D ! 1 when U0 ! 0. This limit should be
taken with care, as the observation time must be made large
before considering the limit of the weak potential. In the
opposite scenario, i.e., U0 ! 0 before t ! 1, we expect
ballistic motion, jxj � t, since then the optical lattice has
not had time to make itself felt [1].

Discussion of the experiment and summary.—Our work
shows a rich phase diagram of the dynamics, with two
transition points. For deep wells, D< 1=5, the diffusion is
Gaussian, while for 1=5<D< 1 we have Lévy statistics,

and for D> 1 Richardson-Obukhov scaling, x� t3=2, is
found. We have shown that the correlations between jump
durations � and displacements � are crucial for the behav-
ior of the tails of the distribution of the total displacement x
and are responsible for the finiteness of its second moment.
When D> 1 the correlations become strong, leading to a
breakdown of decoupled Lévy diffusion. So far, experi-
ments have not detected these transitions, though Ref. [1]
clearly demonstrated that the change in optical potential
depth controls the anomalous exponents in the Lévy
spreading packet. In particular, so far the experiment has
shown at most ballistic behavior, with the spreading

exponent �, defined by x� t�, always less than unity.
This might be related to our observation that to go beyond
ballistic motion, � > 1, one must take the measurement
time to be very long. A more serious problem is that, in the
experimental fitting of the diffusion front to the Lévy
propagator, an additional exponent was introduced [1] to
describe the time dependence of the full width at half
maximum. In contrast, our semiclassical theory shows
that a single exponent � is needed within the Lévy scaling
regime 1=5<D< 1, with the spreading exponent � ¼
1=�. This might be related to the cutoff of the tails of the
Lévy PDF which demands that the fitting be performed in
the central part of the atomic cloud, or alternatively, to the
escape of significant numbers of particles from the optical
trap in the experiment. On the other hand we cannot rule
out other physical effects not included in the semiclassical
model. For example it would be very interesting to simu-
late the system with quantum Monte Carlo simulations,

though we note that these are not trivial in the jxj � t3=2

regime since the usual simulation procedure introduces a
cutoff on momentum, which may give rise to an artificial
ballistic motion. Thus while there are some tantalizing
points of contact between the theory and experiment,
achieving full agreement will require more study.
Finally, many fascinating questions on statistical me-

chanics of cold atoms in optical lattices remain open. One
example is the question of the spatial equilibrium density
of particles when inserted in a confining field and the
field’s effect on the power-law statistics. The role of initial
preparation of the system is also important, since the
underlying process is not stationary. Thus starting with a
power law–distributed initial momentum [22], instead of a
narrow distribution, will influence the diffusion, at least for
short times [37]. In experiments [1], the atoms are brought
to an equilibrium state during a millisecond, while the
diffusion takes up to 40 milliseconds. If we work in the
opposite regime, where the relaxation time is longer than
the diffusion time, the initial momentum distribution will
play a crucial role. Also, time of flight experiments might
be used to investigate first passage time properties of the
atoms, and these might lead to better characterization of
the extreme events. These types of questions shed light on
the appropriate boundary conditions for the fractional dif-
fusion Eq. (1), which was the subject of theoretical inves-
tigation given its relation to the nonlocal character of
fractional derivatives and of long distance jumps [38–41].
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