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The aim of this work is to study the physical properties of a one-way quantum computer in an effective

low-energy cluster state. We calculate the optimal working conditions as a function of the temperature and

of the system parameters. The central result of our work is that any effective cluster state implemented in a

perturbative framework is fragile against special kinds of external perturbations. Qualitative aspects of our

work are important for any implementation of effective low-energy models containing strong multisite

interactions.
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A cluster state jc CSi is a quantum state defined on some
lattice (we focus on a square lattice) of qubits, which
fulfills the following eigenvalue equations:

Ka :¼ Xa �
b2�ðaÞ

Zb; Kajc CSi ¼ jc CSi; (1)

with Xa and Zb as Pauli operators acting on qubits a, b, and
�ðaÞ is the set of nearest neighbors of site a. So-called one-
way quantum computers (1-WQC) perform universal
quantum computations just by one-qubit measurements
on a cluster state [1]. While this saves the need to apply
unitary transformations to the quantum register, it requires
us to reliably prepare a cluster state. One possibility is to
cool the Hamiltonian

Hcl :¼ �X
a2C

Ka (2)

into its nondegenerate ground state, which is by definition
the cluster state. A direct implementation of Hcl is not
realistic, as it contains multiqubit interactions that are not
realized in nature.

This suggests a search for a more realistic Hamiltonian
with only two-qubit interactions having the same nonde-
generate ground state. But such a Hamiltonian does not
exist [2], so one is limited to an approximation of the cluster
state. One approach is to use ancillary qubits to effectively
mediate the many-qubit interactions. Unfortunately, this is
not of practical use, since the necessary precision scales
with the system size [3].

Alternatively, one can implementHcl as an effective low-
energy model of a realistic Hamiltonian containing only
two-qubit interactions [4,5]. Two questions arise naturally:
(1) What are the optimal working conditions to perform
measurement-based quantum computation (MBQC) in an
effective cluster state? (2) How robust are effective cluster
states with respect to external perturbations?

In the following, we show that any such effective cluster
state implemented in a perturbative framework is strongly
affected by external perturbations. Most importantly, our
results directly apply for any perturbative generation of

multisite interactions in effective low-energy models, giv-
ing a fundamental barrier for this rather general concept
used in theoretical physics.
Model.—We replace each qubit on a square lattice

by four physical qubits and we encode the logical cluster
qubit into the subspace defined by the projector
P :¼ j0logih0000j þ j1logih1111j [4]. The Hamiltonian

H :¼ gH0 þ �xzV is then defined by

gH0 :¼ �g
X
�2L

X
i$j

Zð�;iÞ � Zð�;jÞ;

�xzV :¼ ��xz

X
�2L

X4
i¼1

Xð�;iÞ � Z�ð�;iÞ:

The symbol i $ j means that the lattice sites i and j are
related in some connected graph structure. Other notations
are illustrated in Fig. 1(a). The ground-state space of H0 is
the space of all logical qubits.
It is possible to solve this model exactly by transforming

H into the base �loc with the base transformation
CZM (controlled-Z operators on every bond) [5].
Using ðCZMÞXð�;iÞ � Z�ð�;iÞðCZMÞ ¼ Xð�;iÞ � I�ð�;iÞ and

FIG. 1 (color online). (a) Physical qubits (black dots) on a
CaVO lattice. The four physical qubits of a lattice site � 2 L
(gray circles) are namedwith the double indices ð�; 1Þ; . . . ; ð�; 4Þ.
The two physical qubits of a bond m 2 M are called mð1Þ and
mð2Þ. To a physical qubit (�, i), the neighboring qubit on the bond
is �ð�; iÞ. The ZZ interactions ofH0 are solid lines inside the gray
circles. (b) Energy spectrum of Hloc

� [Eq. (3)].
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½CZM; H0� ¼ 0, the transformed Hamiltonian reads
Hloc ¼ P

�2LH
loc
� with

Hloc
� :¼ �g

X
i$j

Zð�;iÞ � Zð�;jÞ � �xz

X4
i¼1

Xð�;iÞ: (3)

The Hloc
� are local transverse-field Ising models (TFIM) on

each lattice site �, which can be solved by exact diagonal-
ization. If R� is the 16� 16 matrix of the 16 eigenvectors

j0i� . . . j15i� of Hloc
� , then the diagonal form of H in

the basis �diag is Hdiag :¼ ½��2LR��Hloc½��2LR
y
��

[Fig. 1(b)]. Most importantly, the gap �E between the
(unique) ground state jc Hi and the first excited state arises
perturbatively in order 4 in �xz=g [5,6]. Its analytic ex-
pression is given by

�E

�2g
¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

xz

g2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

�2
xz

g2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4
xz

g4
þ 1

svuut
:

It is useful to generalize the cluster stabilizers Ka into the
physical space

K� :¼ �4
i¼1

Xð�;iÞ � Z�ð�;iÞ:

The K� can be also transformed into the basis �loc: Kloc
� ¼

ðCZMÞK�ðCZMÞ ¼ �4
i¼1Xð�;iÞ. In this basis it is easy to

show that the Kloc
� commute with each other and with Hloc.

Consequently, the eigenvalues �1 for each stabilizer K�

are conserved quantities. For �xz ! 1, the ground state of
Hloc is the polarized state that is eigenvector to allKloc

� with

eigenvalueþ1. The ground state of H in the limit �xz ! 0
is therefore the cluster state of the logical qubits.

The two low-energy states fj0i�; j1i�g of Hloc
� represent

an effective qubit on the according lattice site� [Fig. 1(b)].
We can therefore derive an effective low-energy model in
the space S of all effective qubits

HdiagjS ¼ ��E

2

X
�2L

~Z� ¼ ��E

2

X
�2L

Kdiag
� jS ; (4)

where ~Z� is the Pauli Z operator acting on the effective

qubit on the lattice site � and Kdiag
� ¼ Ry

�K
loc
� R�. It fol-

lows that the effective low-energy approximation of H in
the limit �xz ! 0 is the cluster state HamiltonianHcl of the
logical qubits.

Fidelity.—The usability of H for quantum computations
depends on the question of how well the logical cluster
state is approximated by jc Hi. This can be quantified by
the fidelity F ¼ jhc Hjc CSij2 of two states and its general-
ization for density operators F ¼ hc CSj�jc CSi [7]. The
fidelity translates to the ‘‘success probability’’ of a MBQC
using jc Hi as a resource state [5].

As shown in Ref. [8], for a Hamiltonian HNð�Þ
with control parameter �, size N, and two ground states
c Nð�Þ, c Nð�0Þ, one finds limN!1Fðc Nð�Þ; c Nð�0ÞÞ ¼ dN

with d 2 ð0; 1Þ being constant. The ‘‘fidelity per site’’

d :¼ limN!1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðc Nð�Þ; c Nð�0ÞÞN

p
is therefore intensive.

Since d < 1 for �xz > 0, the fidelity of the logical cluster
state with jc Hi vanishes for N ! 1. This questions the
usability for large systems. However, the concept can still
be applied by quantum error correction techniques [5]. In
this context the value d translates to the success probability
per measurement, which must be large enough to fulfill the
threshold theorem [9].
We calculate the fidelity Fðjc CSi; �Þ ¼ hc CSj�jc CSi

of the logical cluster state jc CSi with the canonical

density operator � :¼ 1
Z e

��H ¼ 1
Z

P
ie

��Ejc i i jc iihc ij.
Here Z ¼ Trðe��HÞ denotes the partition function,
� ¼ 1

kBT
, and one finds

Fðjc CSi; �Þ ¼ FðjþiL; �loc
L Þ ¼ Fðjþi�; �loc

� ÞN ¼: dN;

with jþi� :¼ 1=
ffiffiffi
2

p ðj0logi� þ j1logi�Þ. Consequently, it is
sufficient to study a single lattice site (we omit index �)

d ¼ hþjRy�diagRjþi ¼ 1

Z

X15
i¼0

e��Ejii jhijRjþij2;

with Z ¼ P
ie

��Ejii . Next, we approximate
e��Ejii jhijRjþij2 � 0, 8 i � 0 and Z � e��Ej0i þ e��Ej1i ,
which is justified by the following observations: (a) For
MBQC, we have to choose the temperature low enough so
that even the first excited state plays a minor role. Due to
the exponential scaling factor we can omit all contributions
of high-energy states. (b) Due to the orthogonality of
the vectors jii, one has jhijRjþij2 � 1� jh0jRjþij2 for
all i 2 f1; . . . ; 15g. For not too large �xz, we expect
jh0jRjþij2 & 1, so the contributions of the other states
are small. (c) For the first excited state, the relation
jh1jRjþij2 ¼ 0 holds. This is proven by the fact that
Rjþi and j1i do not have the same conserved eigenvalue
of the K operator.
The resulting fidelity per site d,

d � 1

1þ e���E
jh0jRjþij2; (5)

is shown in Fig. 2 for different T. For finite T and for small
�xz, the fidelity is dominated by thermal fluctuations. For
large �xz, the curve follows the zero-temperature ground-
state fidelity. In between, there is a trade-off between both
effects. If one assumes an error correction algorithm for a
1-WQC with a simple error model of Pauli errors [10] as it
is given in [11] with an error threshold of 1.4% (d>0:986),
then the maximum Tmax where this threshold holds is

Tmax ¼ 2:18� 10�4g=kB. It is reached for �opt
xz ¼ 0:222g.

The Hamiltonian H can therefore be used as a 1-WQC
under conditions that in principle could be prepared in a
laboratory. Next, we determine the robustness of such an
effective cluster state against external perturbations.
Z field.—First, we consider the presence of an external

field in Z direction:
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Hz :¼ gH0 þ �xzV � hz
X
�2L

X4
i¼1

Zð�;iÞ:

Let us formulate Hz using the basis �diag limited to S.
Since the perturbation commutes with CZM, one has

Hdiag
z jS ¼ ��E

2

X
�2L

~Z� � 4hzcð�xz=gÞ
X
�2L

~X�;

where cð�xz=gÞ 2 R can be read easily from the matrix
R�Zð�;iÞRy

�. One finds lim�xz!0c ¼ 1 and the space S is

decoupled from the high-energy space for this limit. The
value cð�xz=gÞ is plotted in Fig. 2. We stress that the scale
�E is of order 4 in �xz, while the scale of the ~X field is
proportional to hz. One therefore expects a polarization of
the ground state for very small ratios hz=�xz.

This is confirmed by solving the HamiltonianHz exactly
in the basis �loc:

Hloc
z ¼ � X

�2L

�
Hloc

� þ hz
X4
i¼1

Zð�;iÞ
�
¼:

X
�2L

Hloc
z;�;

which is still a sum of local termsHloc
z;�. The fidelity per site

of the ground state is calculated as in the unperturbed case
using the eigenvectors of Hloc

z;�. Figure 3(a) shows that

very small ratios hz=�xz already have a significant impact
on d. For the above example, one finds the upper bound
hmax
z ¼ 1:52� 10�5g, satisfying the threshold d � 0:986

at T ¼ 0. Thermal fluctuations play only a minor role,
because the gap is strongly increased by the external
field [6].

ZZ coupling.—Second, we consider the effect of addi-
tional Ising ZZ couplings on the bonds m 2 M:

Hzz :¼ gH0 þ �xzV � �zz

X
m2M

Zmð1ÞZmð2Þ:

Now we formulate the Hamiltonian using the basis �diag

limited to S:

Hdiag
zz jS ¼ ��E

2

X
�2L

~Z� � �zzc
2ð�xzÞ

X
m2M

~Xmð1Þ ~Xmð2Þ;

where again the space S is decoupled from the high-energy
space for the limit �xz ! 0. This Hamiltonian represents a
TFIMon the square lattice. For thismodel, a quantumphase

transition takes place at
2�zzjcritc2

�E ¼ 0:3285, separating an

ordered phase from a disordered phase [12]. The gap closes
at the critical point, changing the ground state significantly,
so the system is not useful for MBQC anymore. The energy
�E is a fourth-order term in�xz, while the Ising part is of the
order �zz. Very small values �zz=�xz are therefore sufficient
to destroy the cluster phase. The estimated critical line
�zzjcrit is shown in Fig. 3(b) as a function of �xz.
To approximately calculate the fidelity per site for finite

temperatures, we use the analog of Eq. (5):

d � 1

1þ 1
4�2

RR
~k e

��!ð ~kÞd ~k
dðjc HzzjS i; jc CSjSiÞ: (6)

FIG. 2 (color online). Fidelity per site d [Eq. (5)] in depen-
dence of �xz for different temperatures T. Inset: Contribution
cð�xz=gÞ of a physical Z operator to the effective ~X operator.

FIG. 3 (color online). (a) Ground-state fidelity per site d ¼
jh0zjRzjþij2 of Hz as a function of �xz and hz for T ¼ 0.
(b) Fidelity per site d [Eq. (8)] of Hzz in dependence of �xz

and �zz for T ¼ 0:001g=kB.
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We note that point (c) is no longer valid, since K
is no longer conserved, but the use of Eq. (5) is
still justified by points (a) and (b). The dispersion

!ð ~kÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�EzzÞ2 þ ðv 	 j ~kjÞ2

q
of the first excited mode is

taken into account by this equation, while correlated
excitations are neglected [13]. The energy gap �Ezz of
the TFIM is calculated by a dlogPadé [6,6] approximation
of its order-13 series expansion [12] and v ¼ 0:99�E=2
[14] is the spin wave velocity at the critical point.

We now transform jc CSi into the effective basis

jc diag
CS ijS ¼ �

�2L
R�jþ�ijS ¼ �

�2L
j0�ih0�jR�jþ�i; (7)

(using h1jR�jþ�i ¼ 0) such that Eq. (6) reads

d � jh0jRjþij2
1þ 1

2�

R2
ffiffiffi
�

p
0 e��!ðrÞrdr

dTFIM; (8)

where dTFIM :¼ dðjc HzzjS i;��2Lj0�iÞ corresponds to the

ground-state fidelity per site of a TFIM with the polarized
state. We have calculated it as a high-order series expan-
sion about the high-field limit

dTFIM ¼ 1� 1

8
�2 � 93

256
�4 � 2961

2048
�6 � 243 005

32 768
�8

� 812 949 139

18 874 368
�10 � 17 716 040 461 601

65 229 815 808
�12;

where � :¼ 2�zzc
2

�E [6].

The fidelity per site of Hzzjeff is plotted in Fig. 3(b).
Close to the critical point, the fidelity drops due to quantum
and thermal fluctuations. For the above example, one finds
the upper bound �max

zz ¼ 8:33� 10�5g, satisfying the
threshold d � 0:986 at T ¼ 0.

We additionally calculated the energy gap (order 5) and
the ground-state fidelity (order 4) of the full Hamiltonian
Hzz as series expansions. The high-energy contributions
turned out to be negligible corrections to the low-energy
results [6]. Consequently, all conclusions drawn above
for the low-energy space are in quantitative agreement
with the properties of the full model. The cluster phase
breaks down by a second-order phase transition in the 3D
Ising universality class already for very weak external
perturbations.

Conclusions.—We have seen that the effective cluster
state ofH could be used as a 1-WQC under conditions that,
in principle, can be prepared in a laboratory. However, to
be of practical use, effective cluster states must also be
robust against additional perturbations. Let us stress that
we have not discussed the effects of additional noise in the
system that originates from other external sources, giving
local and time-dependent perturbations. It is very well
possible that such noise can be defeated by quantum error
correction techniques. Here, we have focused on global
external perturbations that are typically present in any
experimental realization as subleading terms in the

Hamiltonian. The consequences of such additional opera-
tors cannot be resolved by existing error-correction
procedures.
We have shown that very small external perturbations

can already have a significant impact on effective cluster
states. Typically, the effective multisite interactions yield-
ing the effective cluster state arise in a high order in
perturbation theory (here, order 4). Therefore, any external
perturbation acting in the effective low-energy model in a
lower order (here, order 1) represents a strong constraint
for the effective implementation of a 1-WQC. This effect is
present on any lattice and in any dimension for the problem
studied in this work.
The physical mechanism leading to the dramatic loss of

fidelity is actually very different for the two perturbations
we have considered. The external Z field leads to a polar-
ization of the ground state and therefore to a reduction of
entanglement. The additional Ising coupling induces ther-
mal and quantum fluctuations due to a quantum phase
transition.
The qualitative aspects of our work are relevant for a

much broader class of problems: any effective low-energy
model that is derived perturbatively and that contains
dominant multisite interactions is expected to be affected
by external perturbations. The physical reason is that ef-
fective n-site interactions arise typically in order n, while it
is likely that external perturbations exist that act nontri-
vially on the effective low-energy degrees of freedom al-
ready in a lower order. Consequently, no generic solution
for a protection of effectively implemented multisite inter-
actions can be formulated.
A prominent example is Kitaev’s honeycomb model,

which contains the so-called toric code as an effective
low-energy model perturbatively in order 4 [15]. The toric
code is a topological stabilizer code consisting solely of
four-spin interactions. One can easily show that exactly the
same kind of external perturbations studied in this work
again give rise to operators in the effective model in order-
1 perturbation theory, causing a breakdown of the topo-
logical phase for very small external perturbations. The
experimental realization of the Abelian phase of Kitaev’s
honeycomb model is therefore a very hard task.
In light of the severe constraints found in this work for

the realization of effective cluster states, let us finally
mention concepts for MBQC using elementary entities
with larger spins, which represent a promising route for
future research [16–19].
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