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We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the

PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We

present extensive numerical simulations which provide evidence that this algorithm can prepare the

quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web

pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling

is the out-degree distribution. The top-ranked logðnÞ entries of the quantum PageRank state can then be

estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in

‘‘q-sampling’’ protocols for testing properties of distributions, which require exponentially fewer

measurements than all classical schemes designed for the same task. This can be used to decide whether

to run a classical update of the PageRank.
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Introduction.—Quantum mechanics provides computa-
tional resources that can be used to outperfom classical
algorithms [1]. Problems for which a polynomial or expo-
nential quantum speed-up is achievable have been sought in
quantum computation since its inception, and their ranks
are swelling slowly [2]. Yet, while ranking the results
obtained in response to a user query is one of the most
difficult tasks in searching the web [3], so far no efficient
quantum algorithms have been proposed for this task [4].

Here we present an adiabatic quantum algorithm [8]
which prepares a state containing the same ranking infor-
mation as the PageRank vector. The latter is a central tool
in data mining and information retrieval, at the heart of
the success of the Google search engine [3,9–12]. The
best available classical algebraic and Markov Chain
Monte Carlo (MCMC) techniques used to evaluate the
full PageRank vector require a time which scales as OðnÞ
and O½n logðnÞ�, respectively, where n is the number of
pages, i.e., the size of the web graph. We investigate the
size of the gap of the adiabatic Hamiltonian numerically
using a wide range of web-graph sizes (n 2 f22; . . . ; 214g),
and present evidence that our quantum algorithm prepares
the PageRank state in a time which scales on average as
O½polylogðnÞ�. We argue that while extraction of the full
PageRank vector cannot in general be done more effi-
ciently than when using the aforementioned classical algo-
rithms, there are particular graph-topologies and specific
tasks of relevance in the use of search engines for which the
quantum algorithm, combined with other known quantum
protocols [13–16], may provide a polynomial, or even
exponential speed-up. We discuss the underlying graph
structure which we believe is responsible for this potential

speed-up, and provide evidence that it is the power-law
distribution of the out-degree nodes that plays the key role.
A proof of this fact would be very interesting.
Model of the web-graph.—The PageRank algorithm,

introduced by Brin & Page [9], is probably the most promi-
nent ranking measure using the query-independent hyper-
link structure of the web. The PageRank vector is the
principal eigenvector of the so-called Google matrix, which
encodes the structure of the web-graph via its adjacency
matrix. The humongous size of the World Wide Web
(WWW), with its ever growing number of pages and links,
makes the evaluation of the PageRank vector one of the
most demanding computational tasks ever [12]. In practice
PageRank is evaluated over real data providing the structure
of the actual WWW. On the other hand the use of models of
the web-graph has proved to be useful in testing new ideas
concerning structure measures and dynamical properties of
theweb [11]. To accurately capture theWWWgraph a good
candidate model network should be (i) sparse (the number
of edges is proportional to the number of nodes), (ii) small-
world (the network diameter scales logarithmically in the
size of the network), and (iii) scale-free (the in- and
out-degree probability distributions obey a power law). To
analyze the scaling properties of our algorithmwe used two
well known models of the web graph: the preferential
attachment model [17], and the copying model [18].
These models are based on two different network evolution
mechanisms, both of which yield sparse random graphs
with small-world and scale-free (power-law) features.
We implemented a version [19] of the preferential attach-

ment model that provides a scale-free network withNðdÞ /
d�3, where NðdÞ is the number of nodes of degree d.
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The copying model [18] improves upon the preferential
attachment model by exploiting only local structure to
generate a power-law degree distribution, and by providing

for random graphs with NðdÞ / dð2�pÞ=ð1�pÞ, where p is a
probability [20].

Google matrix and PageRank.—PageRank can be seen
as the stationary distribution of a random walker on the
web graph, which spends its time on each page in propor-
tion to the relative importance of that page [10].

To model this define the transition matrix P1 associated
with the adjacency matrix A of the graph

P1ði; jÞ ¼
�
1=dðiÞ if ði; jÞ is an edge of A;

0 else;
(1)

where dðiÞ is the out-degree of the ith node.
Since the out-degree of a node might be 0, a walker that

follows only links can become trapped in a node with no
out-links. Equivalently, if P1 has a row of all 0’s then it is
not stochastic. To overcome this problem one modifies P1

by replacing every zero row with the vector ~e=n whose
entries are all 1=n. Call this new stochastic matrix P2.
However, there is still the possibility of ‘‘importance
sinks,’’ meaning subgraphs with in-links but no out-links,
i.e., P2 needs to be made irreducible [21]. To accomplish
this one defines the Google matrix G as

G :¼ �PT
2 þ ð1� �ÞE; (2)

where E � j ~vih ~ej.
The ‘‘personalization vector’’ ~v is a probability distri-

bution with all positive entries; the typical choice is
~v ¼ ~e=n. The parameter � is the probability that the
walker follows the link structure of the web-graph at
each step, rather than hop randomly between graph nodes
according to ~v. Google reportedly uses � ¼ 0:85, which
we also use in this work. The matrix EmakesG irreducible
and aperiodic, and hence the Perron-Frobenius theorem
ensures the existence of a unique eigenvector with all
positive entries associated to the maximal eigenvalue 1.
This eigenvector is precisely the PageRank ~p [10].
Moreover, the modulus of the second eigenvalue of G is
upper-bounded by � [22]. This is important for the con-
vergence of the power method, the standard computational
technique employed to evaluate ~p. It uses the fact that for
any probability vector ~p0

~p ¼ lim
k!1

Gk ~p0: (3)

The power method computes ~p with accuracy � in a time
O½sn logð�Þ= logð�Þ�, where s is the sparsity of the graph
(maximum number of nonzero entries per row of the
adjacency matrix). The rate of convergence is determined
by �. The other technique used in the evaluation of
PageRank is MCMC, where a direct simulation of rapidly
mixing random walks is used to estimate the PageRank at
each node. The typical running time is O½n logðnÞ� [23].

Adiabatic quantum computation.—Even though classi-
cal PageRank computation time scales modestly with the
problem size n, in practice its evaluation for the actual
WWW is already very time consuming, a cost which can
only be expected to grow if current computational methods
remain the norm, given the rapid pace of expansion of the
web. Furthermore, it is often desirable to have multiple
personalization vectors, which means that more than one
PageRank needs to be evaluated for each WWW graph
instance. Considering also the fact that the web-graph is an
evolving dynamic entity, it is clear that it is important to
speed up the computation of PageRank in order to provide
up-to-date results from the ranking algorithm.
We now show how adiabatic quantum computation

(AQC) [8,24–27] might be able to help in the optimization
of the resources needed to provide an up-to-date
PageRank.
Small-scale experiments with the potential to pave the

way toward laboratory realization of AQC, involving 8
superconducting flux qubits, have recently been reported
[28]. In AQC one encodes the solution to a difficult prob-
lem in the ground state of a related problem Hamiltonian

HðpÞ. The latter is arrived at by slowly modifying an initial

Hamiltonian HðiÞ, for which the ground state is—by con-
struction—easy to obtain. The adiabatic evolution is gen-

erated by HðsÞ ¼ ð1� sÞHðiÞ þ sHðpÞ. If the modification
from the initial to the final Hamiltonian is done slowly
enough, and the parameter sðtÞ: 0 � 1 has a smooth time
dependence, where the time t 2 ½0; T�, then the quantum
adiabatic theorem guarantees that the state of the system
will be the ground state for all t with high probability [29].

More precisely, in order for the final system state jc ðTÞi ¼
T e�i

R
T

0
H½sðtÞ�dtjc ð0Þi to have fidelity

f :¼ jhc ðTÞj�ij * 1� �a (4)

with respect to the desired ground state j�i of HðpÞ, the
total adiabatic evolution time should satisfy

T * a
�b�1

��b
; (5)

where � ¼ maxskdH=dsk (the norm is the largest eigen-
value) and � ¼ mins�ðsÞ, where �ðsÞ is the instantaneous
energy gap of HðsÞ between the ground and first excited
state. The values of the integer exponents a and b in
Eqs. (4) and (5) depend upon the differentiability and
analyticity properties ofHðsÞ, and the boundary conditions
satisfied by its derivatives; typically b 2 f1; 2; 3g [30],
while a can be tuned between 1 and arbitrarily large integer
values, equal to the number of vanishing derivates of HðsÞ
at the boundaries s ¼ 0 and s ¼ 1 [31].
Adiabatic quantum PageRank algorithm.—Since G is

not reversible we cannot directly apply the standard tech-
nique of mapping it to a discriminant matrix without a
priori knowledge of the stationary state [13,33,34].
Instead, let us consider the following nonlocal problem
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Hamiltonian associated with a generic Google matrix G
(note that we use H and h for local and nonlocal
Hamiltonians, respectively):

hðpÞ ¼ hðGÞ � ðI�GÞyðI�GÞ: (6)

Since hðGÞ is positive semidefinite, and 1 is the maximal
eigenvalue of G associated with ~p, it follows that the
ground state of hðGÞ is given by j�i � ~p=k ~pk2. The initial
Hamiltonian has a similar form, but it is associated with the
Google matrix Gc of the complete graph [35]

hðiÞ ¼ hðGcÞ � ðI�GcÞyðI�GcÞ: (7)

The ground state of hðiÞ is jc ð0Þi ¼ P
n
j¼1 jji=

ffiffiffi
n

p
, a fully

delocalized, uniform quantum superposition state. The
basis vectors jji span the n-dimensional Hilbert space of
logðnÞ qubits. The interpolating adiabatic Hamiltonian is

hðsÞ ¼ ð1� sÞhðiÞ þ shðpÞ: (8)

Equations (6)–(8) completely characterize the adiabatic
quantum PageRank algorithm, apart from the interpolation
function sðtÞ, which can be optimized using differential
geometric or variational methods to simultaneously mini-
mize the adiabatic evolution time T and the adiabatic error

" :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
[36–38]. By simulating the dynamics gener-

ated by hðsÞwe can estimate the parameters in Eq. (5) [39].
Simulation results.—Figs. 1 and 2 summarize our nu-

merical simulations on the USC high-performance cluster
[41]. Figure 1 shows the results for the preferential attach-
ment model, providing information on the adiabatic

error " and the scaling of � �k dh=ds k¼ khðpÞ � hðiÞk

[corresponding to the numerator in Eq. (5)], with respect to
the number of web-graph nodes. In these simulations we
made no attempt to minimize the error by optimizing sðtÞ.
From the upper panel we can conclude that the adiabatic
runtime T scales as the inverse square of the adiabatic
error ". The bottom panel shows the ensemble average of
�. The fit clearly shows that for the preferential attachment
model � exhibits a double logarithmic scaling as a function
of n. We checked numerically that similar results hold also
for the copying model (not shown).
Figure 2 displays the scaling of the minimum gap with

respect to system size, averaged over 1000 random web-
graph realizations. The top panel displays the results for
the preferential attachment model. The bottom panel is for
the copying model, for which we considered different
values of the parameter p. In both models the random
graphs were generated so that they have both in- and out-
degree power-law distributions. More specifically, we
mixed (i.e., added the adjacency matrices of) graphs GA,
with only in-degree power-law distributions, with graphs
GB with only out-degree power-law distributions. For the
simulations reported here, the maximum out-degree for
GB is approximately 3 times greater than the maximum
in-degree for GA. Our simulation results, which cover
nearly 4 orders of magnitude of graph sizes, indicate
that, for the class of graphs we have considered, the inverse
of the average gap is proportional to logðnÞ.
Putting together the above observations, namely, that

for a typical graph instance �� polyloglogðnÞ, ��
1=polylogðnÞ, T � "�c (with c � 2, see Fig. 1), we can
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FIG. 1 (color online). Top panel: The typical adiabatic error
½"�ave scales approximately as T�0:48. Results are for a system of
size n ¼ 16 (we checked different sizes obtaining similar re-
sults), averaged over 100 random web-graph realizations.
Bottom panel: ½��ave scales as loglogðnÞ, with a prefactor which
is approximately 3. Results were averaged over 1000 random
web-graph realizations. See text for more details.
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FIG. 2 (color online). Scaling of the inverse of the average
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numerically that the same logarithmic scaling holds for the
averaged inverse gap ½1=��ave, with the latter slightly larger
than 1=½��ave for all graph sizes n [20]. Note that for the copying
model the parameter p, relative to the in-degree distribution,
affects only the prefactor of the scaling.
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conclude from Eq. (5) that the typical runtime of the
adiabatic quantum PageRank algorithm scales as

T � "�2½loglogðnÞ�b�1½logðnÞ�b; (9)

where b is some small positive integer that depends on the
details of the network topology (see Fig. 2). We checked
this result by simulating the adiabatic evolution of the
system allowing for a runtime T ¼ ��2½loglogðnÞ�b�1 �
½logðnÞ�b with both b ¼ 2 and b ¼ 3 for small graphs
(up to 20 nodes), with a fixed small �. For each evolving
random graph we found that the final calculated adiabatic
error " is always upper bounded by �.

Mapping to a local Hamiltonian.—Since the Google
matrix G is not sparse, the physical implementation of
the logðnÞ qubits Hamiltonian in Eq. (8) can, in general,
require many-body interactions with arbitrarily high local-
ity. This problem is similar to one that arises, e.g., in
the quantum adiabatic implementation of Grover’s search
algorithm [25]. A general technique to overcome the
nonlocality problem is the use of so-called perturbation
gadgets, which requires the introduction of ancillary
qubits [42]. However, a more direct alternative is to map
the dynamics generated by Eq. (8) from the n-dimensional
Hilbert space into the n-dimensional single particle exci-
tation subspace of an effective 2n-dimensional Hilbert
space with n qubits. This correspondence has been used
recently in a different context to study the quantum
dynamics of biomolecular systems [43], and it has also
been considered from an experimental perspective [44].
The new effective adiabatic Hamiltonian is given by

HðsÞ ¼ Xn
i¼1

hðsÞii�þ
i �

�
i þXn

i<j

hðsÞijð�þ
i �

�
j þ �þ

j �
�
i Þ;

(10)

where hðsÞij is the ði; jÞth matrix element of hðsÞ as given in
Eq. (8), and ��

i is the Pauli raising or lowering matrix for
the ith qubit (or web-graph node) [45]. The spectral prop-
erties of HðsÞ in the single particle excitation subspace are
the same as those of hðsÞ [20]. This implies that the
estimate (9) also holds for HðsÞ, and hence one could
envision programming HðsÞ of Eq. (10) onto physical
systems such as excitonic quantum dots or flux qubits,
where two-qubit coupling has been shown to be sign and
magnitude tunable [47–49]. Provided this programming
step can be executed in time at most O½logðnÞ�, updating
the matrix elements hðsÞij is efficient [50].

At the conclusion of the adiabatic evolution generated
by the Hamiltonian in Eq. (10), the PageRank vector
~p ¼ fpig is encoded into the quantum PageRank state
j�i ¼ P

n
i¼1

ffiffiffiffiffiffi
�i

p jii of an n-qubit system, where jii is the
vector with 1 in the ith entry, and 0’s in all the others. The
probability of finding the only allowed excitation at site i
is �i ¼ p2

i =k ~pk22. One can estimate �i by repeatedly sam-
pling the expectation value of the operator �z

i in the final
state. The number of measurements M needed to estimate

�i is given by the Chernoff-Hoeffding bound [52],
allowing us to approximate �i with an additive error ei
and with M ¼ polyðe�1

i Þ. We now discuss tasks for which

the quantum ranking algorithm offers a speed-up.
Ranking the top.—The fact that the amplitudes of the

quantum PageRank state are f ffiffiffiffiffiffi
�i

p g, rather than f ffiffiffiffiffi
pi

p g, is in
fact a virtue: we can show that8i the total quantum cost is
O½n2	i�1polylogðnÞ� for estimating the rank �i with addi-
tive error ei � �i, while the corresponding classical cost is
at best O½n	i logðnÞ� [53]. Thus for this task there is a
polynomial quantum speed-up whenever 	i < 1; our simu-
lations show that this is indeed the case for the top-ranked
logðnÞ pages.
Comparing successive PageRanks.—Another context

for useful applications is ‘‘q-sampling’’ [13]. Since the
classical PageRank algorithm is so costly when applied
to the WWW, one would like to develop criteria for
when to run it, e.g., after a relevant perturbation to the
graph. The adiabatic quantum algorithm can provide, in
time O½polylogðnÞ�, the pre- and post-perturbation states
j�i and j ~�i as input to a quantum circuit implementing
the SWAP-test [16]. To obtain an estimate of the fidelity
jh�j ~�ij2 we need to measure an ancilla Oð1Þ times,
the number depending only on the desired precision.
Whenever some relevant perturbation of the previous quan-
tum PageRank state is observed, one can decide to run the
classical algorithm again to update the classical PageRank.
Deciding whether two probability distributions—one of
which is known—are close, classically requires approxi-
mately

ffiffiffi
n

p
samples [14,54]. Related quantum algorithms

for testing properties of distributions [55] have recently
been proposed and analyzed [14].
Discussion.—Why do we observe a ‘‘large’’ gap that

scales as O½1=polylogðnÞ�? The out-degree distribution
seems to be the key feature activating the polylogarithmic
behavior [20]. In support of this claim we have also ana-
lyzed two other classes of random graphs: one with only
in-degree power-law distribution, the other with only out-
degree power-law distribution. In the former we found that
the average inverse gap scales polynomially in the system
size (‘‘small’’ gap), while in latter we found the large gap,
polylogarithmic scaling. On the other hand, when the out
degrees are equal to the in degrees (as for undirected graphs)
the gap scaling is again polynomial. The scaling for inter-
mediate cases is determined by the presence or absence of
sufficiently many nodes linking to a relevant portion of the
graph: the simulations we have reported here show that
graphs with approximately 3 times more outgoing than
incoming links in the most connected nodes exhibit the
polylogarithmic scaling. Establishing the exact connection
between the in- and out-degree distributions and gap scaling
is an interesting open problem for future research.
It would also be interesting to formulate a quantum circuit

version of our PageRank algorithm. Perhaps the results
obtained in [56] concerning the efficient solution of linear
systems of equations could be used for this purpose.
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