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We consider open many-body systems governed by a time-dependent quantum master equation with

short-range interactions. With a generalized Lieb-Robinson bound, we show that the evolution in this very

generic framework is quasilocal; i.e., the evolution of observables can be approximated by implementing

the dynamics only in a vicinity of the observables’ support. The precision increases exponentially with the

diameter of the considered subsystem. Hence, time evolution can be simulated on classical computers

with a cost that is independent of the system size. Providing error bounds for Trotter decompositions, we

conclude that the simulation on a quantum computer is additionally efficient in time. For experiments and

simulations in the Schrödinger picture, our result can be used to rigorously bound finite-size effects.
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In Lorentz-invariant theories, a maximum speed for the
propagation of information is, by construction, the speed of
light. In nonrelativistic quantum theory, the existence of a
maximum propagation speed results more indirectly and
for different reasons. For nonpathological models, this
maximum speed is much smaller than the speed of light.
The seminal paper by Lieb and Robinson [1] and further
contributions like [2–13] cover isolated systems.

Here, we consider the evolution of a more general and,
experimentally, extremely relevant class of systems—open
quantum many-body systems governed by a quantum mas-
ter equation [14,15] with short-range Liouvillians that are
allowed to be time dependent. Prominent experimental
examples are presented in Refs. [16–20], and recent theo-
retical advances on quantum computation, nonequilibrium
steady states, and phase transitions in open systems can, for
example, be found in Refs. [21–24]. Going beyond the
existence of a finite maximum propagation speed and the
existence of a well-defined thermodynamic limit [1,25], we
show that the time evolution of such systems is quasilocal.
This means that, up to an exponentially small error, the
diameter of the support of any evolved local observable
grows at most linearly in time, or, put differently, that the
evolution of the local observable can be approximated to
arbitrary precision by applying the propagator of a spa-
tially truncated version of the Liouvillian, as seen in
Fig. 1(b). For the special case of isolated systems, where
the evolution is given by a unitary transformation, the
corresponding question has been addressed in Ref. [9].
As a tool for the proof of quasilocality, we derive and
employ a Lieb-Robinson-type bound very similar to the
recent results of Poulin [26] and Nachtergaele et al. [25].
All constants in the bounds are given explicitly in terms of
the system parameters.

The quasilocality of Markovian quantum dynamics has
several crucial consequences. It implies that the evolution
of observables with a finite spatial support can be

simulated efficiently on classical computers, in the sense
that the computation cost is independent of the system size,
irrespective of the desired accuracy. This can, for example,
be exploited in an exact diagonalization approach for a
sufficiently large vicinity of the support of the considered
observable, as illustrated in Fig. 1(b). For more sophisti-
cated simulation techniques, we provide, in extension
of Ref. [27], error bounds for Trotter decompositions
[28] of the subsystem propagator into a circuit of local
channels, as shown in Fig. 1(c). The Trotter error is
polynomial in the time, at most linear in the size of the
time step, and can hence be made arbitrarily small.
Importantly, the subsystem Trotter decompositions allow
for the efficient simulation of the time evolution on a
quantum computer as envisaged by Feynman. For any
required accuracy, the simulation can be implemented
with a cost that is independent of the system size and
polynomial in the time.
Experimental and numerical physicists who study non-

equilibrium systems in the Schrödinger picture can use our
result on quasilocality to rigorously bound finite-size
effects. This is, for example, relevant for experiments
with ultracold atoms in optical lattices [29] and numerical
investigations employing time-dependent density-matrix
renormalization group methods [30–33].
Setting.—Let us consider lattice systems, where each

site z 2 � is associated with a local Hilbert space
H z. Subsystem Hilbert spaces are denoted by
H V :¼ N

z2VH z8V�� andH :¼ H �. Let �ðtÞ denote
the system state at time t. Markovian dynamics of an open
quantum system, i.e., the evolution under a linear differ-
ential equation that generates a completely positive and
trace-preserving map for �, can always be written in the
form of a Lindblad equation [34–36]:

@t� ¼ �i½H;�� þX
�

�
L��L

y
� � 1

2
ðLy

�L��þ �Ly
�L�Þ

�
;
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where the arbitrary Lindblad operators L� and the
Hermitian Hamiltonian H may depend on time. This equa-
tion captures, for example, in the framework of the Born-
Markov approximation, the evolution of a system that
interacts with an environment [14,15] and isolated systems
as a special case. Let us switch from the Schrödinger
picture, where expectation values are evaluated according
to hOis!t ¼ Tr½�ðtÞO� with �ðsÞ ¼ � to the Heisenberg
picture, where hOis!t ¼ Tr½�OðsÞ� with OðtÞ ¼ O. The
corresponding time-dependence of an observable OðsÞ 2
BðH Þ is then given by the quantum master equation
@sOðsÞ ¼ �LðsÞOðsÞ, where LðtÞ 2 BðBðH ÞÞ is a
superoperator, the so-called Liouvillian, with the
Lindblad representation

LO ¼ i½H;O� þX
�

�
Ly
�OL� � 1

2
ðLy

�L�OþOLy
�L�Þ

�
:

The set of Liouvillians with spatial support V � � will be
denoted by LV � BðBðH VÞÞ.

In order to be able to use Lieb-Robinson bound tech-
niques, we need to restrict ourselves to Liouvillians with
norm-bounded short-range interaction terms. Let us hence
assume that L is a sum of local Liouville terms ‘Z with
norm bound j‘j, maximum range a, and a maximum
number Z of nearest neighbors [37]. Specifically,

L ðtÞ ¼ X
Z��

‘ZðtÞ; ‘ZðtÞ 2 LZ; (1)

j‘j :¼ sup
t;Z��

k‘ZðtÞk; (2)

a :¼ sup
Z:‘Z�0

diamðZÞ; (3)

Z :¼ max
Z:‘Z�0

jfZ0 � �j‘Z0 � 0; Z0 \ Z � ;gj; (4)

where diamðZÞ :¼ maxx;y2Zdðx; yÞ is the diameter of Z

and d is a metric on the lattice �. In Eq. (2), we have
used the superoperator norm [38,39] defined by kTk :¼
supO2BðH ÞkTOk=kOk. In the Heisenberg picture, this is

the physically relevant norm as induced by the operator
norm kOk. For notational convenience, we define for every
subsystem V � � the corresponding extension �V, volume
VolðVÞ, and truncated Liouvillian LV ,

�V :¼ [
Z:‘Z�0
Z\V�;

Z; (5)

Vol ðVÞ :¼ jfZ � Vj‘Z � 0gj; (6)

L VðtÞ :¼
X
Z�V

‘ZðtÞ: (7)

Propagators �Vðs; tÞ are superoperators that map observ-
ables to time-evolved observables. They are defined as the
unique solutions of

@s�Vðs; tÞ ¼ �LVðsÞ�Vðs; tÞ; �Vðt; tÞ ¼ id 8s�t: (8)

With �ðs; tÞ :¼ ��ðs; tÞ, one has indeedOðsÞ ¼ �ðs; tÞOðtÞ.
Propagators obey the composition rule �ðr; sÞ�ðs; tÞ ¼
�ðr; tÞ 8r�s�t. Furthermore [38], the derivative with re-
spect to the second time argument is given by

@t�Vðs; tÞ ¼ �Vðs; tÞLVðtÞ; (9)

and the propagators are norm-decreasing,

k�ðs; tÞOk � kOk 8 L 2 L�; s � t; O 2 BðH Þ:
(10)

Quasilocality of the evolution.—Given an operator
OY 2 BðH YÞ with support Y � �, we would like to
show that the exactly time-evolved operator �ðr; tÞOY

with r � t can be approximated by the evolution with
respect to a spatially truncated Liouvillian, i.e., by
� �Vðr; tÞOY with Y � V � �. Indeed, our main result,
Theorem 2, states that the approximation error is exponen-
tially small, in the distance of� n V to the time-r slice of a
space-time cone originating from the operator’s support Y
at time t, as depicted in Fig. 1(b). More precisely, the error
decays exponentially in dðY;� n VÞ=a� vðt� rÞ, where
dðX; YÞ :¼ infx2X;y2Ydðx; yÞ is the distance of two subsys-

tems X, Y � �, and v ¼ eZj‘j is the so-called Lieb-
Robinson velocity.

FIG. 1 (color online). (a) An evolved local operator �ðs; tÞOY behaves almost like the identity outside its associated space-time cone.
(b) Approximating �ðs; tÞOY by application of subsystem propagators to OY . The errors decrease exponentially with the subsystem
sizes. (c) For one-dimensional systems, approximating �ðs; tÞOY by a Trotter decomposition yields an error scaling as ðt� sÞ2�t. Note
that the Trotter circuit can be trimmed off at the boundary of the Lieb-Robinson space-time cone.
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To prove this, we can write the difference of the evolved
operators in the form

�ðr; tÞOY � � �Vðr; tÞOY

¼ �
Z t

r
ds@s½� �Vðr; sÞ�ðs; tÞ�OY

¼
Z t

r
ds� �Vðr; sÞ½LðsÞ �L �VðsÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼L�nV ðsÞ

�ðs; tÞOY

due to the fundamental theorem of calculus and
Eqs. (8) and (9). Using the triangle inequality and the
fact that the propagators are norm-decreasing, it follows
that

k�ðr; tÞOY � � �Vðr; tÞOYk � X
X��nV

Z t

r
dsk‘XðsÞ�ðs; tÞOYk:

(11)

In the case of unitary dynamics (‘XðsÞO ¼ i½hX;O�), the
integrand would be of the form k½hX; �ðs; tÞOY�k, and the
standard Lieb-Robinson bound [1–5] would be applicable.
To proceed in our more general case, however, we use a
Lieb-Robinson bound for Markovian quantum dynamics,
similar to recent results in Refs. [25,26].

Theorem 1 (Lieb-Robinson bound for Markovian quan-
tum dynamics).—Let the Liouvillian LðtÞ ¼ P

Z��‘ZðtÞ
for the lattice� be of finite range a, with a finite maximum
number Z of nearest neighbors, and j‘j as defined in
Eqs. (1)–(4). Also, let KX 2 LX, OY 2 BðH YÞ, and
r � t 2 R. Then

kKX�ðr; tÞOYk � V X;YkKXkkOYkevðt�rÞ�dðX;YÞ=a;
(12)

where v :¼ expð1ÞZj‘j and V X;Y :¼ minfVolð �XÞZ ; Volð �YÞZ g.
The proof is given in the Supplemental Material [38].

With the Lindblad representation KXO ¼ i½k;O� þP
�½Ky

�OK� � 1
2 ðKy

�K�OþOKy
�K�Þ� of the Liouvillian

KX, one has in Eq. (12) that kKXk=2 � kkk þP
�kK�k2. The theorem tells us that an evolved observable

�ðr; tÞOY remains basically unchanged when we evolve it
with respect to a Liouvillian that is supported at a distance
R � vðt� rÞ away from Y, i.e., that �ðr; tÞOY behaves like
the identity outside the corresponding space-time cone. In
the special case KXO ¼ i½OX;O�, Eq. (12) yields a Lieb-
Robinson bound for k½OX; �ðr; tÞOY�k as in Ref. [26].

This theorem can now be employed to proceed from
Eq. (11) in our proof of quasilocality. Let us restrict
ourselves to the typical case of LiouvilliansLðtÞ for which
the number of terms ‘XðtÞ with distance dðy; XÞ=a 2
½n; nþ 1Þ from any site y 2 � is bounded by a power law,

jRn;yj � Mn� 8y2�;n2Nþ ;

Rn;y :¼
�
X � �j‘X � 0;

dðy; XÞ
a

2 ½n; nþ 1Þ
�
; (13)

for some constants M, � > 0. Now, choose a point y0 2 Y
that is closest to � n V, i.e., dðy0;� n VÞ ¼ dðY;� n VÞ.
WithD :¼ ddðY;� n VÞ=ae, we can exploit that the support
of every term in L�nV is an element of exactly one of the

sets Rn;y0 with n � D to obtain

k�ðr; tÞOY � � �Vðr; tÞOYk

� X1
n¼D

X
X2Rn;y0

Z t

r
dsk‘XðsÞ�ðs; tÞOYk

� X1
n¼D

Mn�j‘jkOYk
Z t

r
dsevðt�rÞ�n

� Mj‘jkOYk e
vðt�rÞ

v

X1
n¼D

n�e�n:

In the second step, Theorem 1 andV XY � Volð �XÞ=Z � 1
have been used. With the bound

P1
n¼D n�e�n �

2eD�e�D 8D>2�þ1, we arrive at the central result of this
work.
Theorem 2 (Quasilocality of Markovian quantum dy-

namics).—Let the Liouvillian LðtÞ ¼ P
Z��‘ZðtÞ for the

lattice � be of finite range a, with a finite maximum
number Z of nearest neighbors, and j‘j as defined in
Eqs. (1)–(4). Further, let constraint Eq. (13) be fulfilled
for some constantsM, � > 0. Also, let Y � V � �, OY 2
BðH YÞ, and r � t 2 R. Then one has with D :¼
ddðY;� n VÞ=ae

k�ðr;tÞOY�� �Vðr;tÞOYk
�2M

Z
kOYkD�ev�ðt�rÞ�D 8D>2�þ1; (14)

where v is the Lieb-Robinson speed from Eq. (12).
The full dynamics can be approximated with exponen-

tial accuracy by subsystem dynamics. In a sense, the con-
straint Eq. (13) requires the lattice to have a finite spatial
dimension. A D-dimensional hypercubic lattice with
finite-range interactions fulfills Eq. (13) with � ¼
D� 1. An interesting observation is that short-range mod-
els on a Bethe lattice [40] have a finite Lieb-Robinson
speed according to Theorem 1 but do not fulfill Eq. (13)
and are thus not covered by Theorem 2. Hence, for such
systems, it is conceivable that a quench of the Liouvillian
starting at time t ¼ 0 with a distance of at least aD from
some point y causes a perceptible effect at y for a time
t� 	 D=v.
Trotter decomposition of the evolution.—The quasilo-

cality of the dynamics, Theorem 2, implies that the evolu-
tion of observables with a finite spatial support can be
simulated efficiently on classical computers, in the sense
that the computation cost is independent of the system
size, irrespective of the desired accuracy. However, ex-
ploiting this, in an exact diagonalization approach that
stores the approximated time-evolved observable
� �Vðr; tÞOY in a full basis ofH �V exactly, requires resources
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that are exponential in the size j �Vj of the considered
subsystem. There are more sophisticated numerical tech-
niques; e.g., one can use matrix-product operators [41–43]
for the representation of (an approximation to) � �Vðr; tÞOY

or sampling algorithms. In such schemes, it is typically not
possible to address the differential equation for � �Vðr; tÞOY

directly, but one can use Trotter decompositions [28] in-
stead, where propagators � �Vðr; tÞ are decomposed into a
circuit of local (diameter-a) channels.

Using the quasilocality, Theorem 2, and techniques as in
Ref. [27], we can derive a Trotter decomposition with an
error that is polynomial in time, at most linear in the time
step, and, in extension of Ref. [27], system-size indepen-
dent. Furthermore, implementing such a Trotter circuit on a
quantum computer [27] yields a simulation that, addition-
ally to being independent of the system size, is efficient in
time. In this case, the physically relevant norm for super-
operators T is the subsystem-seminorm

kTkY :¼ sup
OY2BðH Y Þ

kTOYk=kOYk: (15)

Theorem 3 (Efficient Trotter decomposition of time-
evolved observables).—With the preconditions of
Theorem 2, a sequence of times t0 � t1 � . . . � tN and a
sequence of subsystems Y � V1 � V2 � . . . � VN � �
such that Dn :¼ ddðY;� n VnÞ=ae> 2�þ 18n, the
Trotter decomposition

~� :¼ YN
n¼1

Y
Z� �Vn:‘Z�0

�Zðtn�1; tnÞ (16)

into propagators �Z for local Liouville terms ‘Z approx-
imates the full system propagator �ðt0; tNÞ up to an error

k�ðt0; tNÞ � ~�kY � XN
n¼1

�
2M

Z
D�

ne
vðtn�t0Þ�Dn þ "n

�
;

"n :¼ ðtn � tn�1Þ2Z Volð �VnÞj‘j2eðtn�tn�1Þj‘j (17)

with the Lieb-Robinson speed v from Eq. (12).
In the Trotter decomposition ~�, we used the conventionQ
N
n¼1 Tn ¼ T1T2 . . .TN, and the ordering of the channels

�Z in the second product of Eq. (16) can be chosen
arbitrarily. As in Ref. [27], one can use averaged

Liouvillians, i.e., �Zðr; tÞ � e
R

t

r
ds‘ZðsÞ, without changing

the scaling of the error bound. Choosing a constant time
step, tn ¼ n�t, and subsystems Vn such that Dn ¼ D0 þ
vn�t, for sufficiently large D0, the bound (17) is domi-
nated by the Trotter errors "n. The subsystems can be
chosen such that diamVn � diamðYÞ þ aDn, as shown in
Fig. 1(c). For this case, the total error is in
Oð�tðdiamðYÞ=aþD0 þ vtÞ�þ2Þ. Higher-order Trotter-
Suzuki decompositions [44] can be used to further improve
the scaling in �t.

To prove Theorem 3, one can first apply Theorem 2,
the inequality kT1T2� ~T1

~T2k�kT1kkT2� ~T2kþkT1� ~T1k
k ~T2k, and Eq. (10) iteratively N times, to obtain

k�ðt0; tNÞ � �VkY � 2M

Z

XN
n¼1

D�
ne

vðtn�t0Þ�Dn (18)

with �V :¼ Q
N
n¼1 � �Vn

ðtn�1; tnÞ. For every time-step propa-

gator � �Vn
ðtn�1; tnÞ, we can then employ a Trotter decom-

position similar to Ref. [27], yielding

k� �Vðr;tÞ�
Y

Z� �V;‘Z�0

�Zðr;tÞkY �ðt�rÞ2ZVolð �VÞj‘j2eðt�rÞj‘j:

(19)

See the Supplemental Material [38] for details. Combining
Eqs. (18) and (19) with the triangle inequality proves
Theorem 3.
Conclusion.—We have shown that the evolution of an

observable with support Y under a quantum master equa-
tion with a short-range Liouvillian can be approximated by
the evolution with respect to the truncation of the
Liouvillian to a subsystem V 
 Y. The error decreases
exponentially in the distance of Y from the complement
of V. With this tool, we derived an error bound for Trotter
decompositions of the propagator. Those results corre-
spond to efficient simulation techniques for open-system
dynamics on classical and quantum computers and provide
rigorous bounds to finite-size effects.
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