
Quantifying Tripartite Entanglement of Three-Qubit Generalized Werner States

Jens Siewert

Departamento de Quı́mica Fı́sica, Universidad del Paı́s Vasco UPV/EHU, 48080 Bilbao, Spain
and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

Christopher Eltschka

Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
(Received 13 January 2012; published 4 June 2012)

Multipartite entanglement is a key concept in quantum mechanics for which, despite the experimental

progress in entangling three or more quantum devices, there is still no general quantitative theory that

exists. In order to characterize the robustness of multipartite entanglement, one often employs generalized

Werner states, that is, mixtures of a Greenberger-Horne-Zeilinger (GHZ) state and the completely

unpolarized state. While two-qubit Werner states have been instrumental for various important advance-

ments in quantum information, as of now there is no quantitative account for such states of more than two

qubits. By using the GHZ symmetry introduced recently, we find exact results for tripartite entanglement

in three-qubit generalized Werner states and, moreover, the entire family of full-rank mixed states that

share the same symmetries.

DOI: 10.1103/PhysRevLett.108.230502 PACS numbers: 03.67.Mn, 03.65.Ud

Currently we observe an impressive evolution in the
field of quantum engineering. The state of the art includes
up to 14 entangled trapped ions, eight entangled photons,
and seven superconducting circuits [1–3]. As opposed to
this, entanglement theory is, despite significant progress
during the past decade [4,5], still far from adequately
quantifying entanglement in multipartite systems, even as
small as three qubits.

For few qubits there are well-established entanglement
measures [6] that quantitatively characterize class-specific
entanglement (that is, classes with respect to stochastic
local operations and classical communication, so-called
SLOCC classes). There is the concurrence [7] for pure
two-qubit states and the three-tangle for three qubits [8].
It is possible to construct analogous measures also for four
and more qubits (e.g., Ref. [9]). All of these measures can
be extended to mixed states via the convex roof [10]. The
difficulty, however, is to compute the convex roof in prac-
tice. To date, this is known only for two qubits [11] and a
few three-qubit problems chiefly of academic interest
[12,13].

Here we provide an exact quantitative description of
three-qubit entanglement in mixed states of practical rele-
vance, the generalized Werner state [14,15], and all states
with the same symmetries. Precise quantitative knowledge
on two-qubit Werner states has triggered important advan-
ces, e.g., regarding the relation between entanglement and
nonlocality [14], entanglement purification, and noisy
quantum channels [7,16], or mixed state entanglement
under symmetries [17,18]. In contrast, for three-qubit gen-
eralized Werner states the exact SLOCC classification has
been completed only recently by introducing the concept
of Greenberger-Horne-Zeilinger (GHZ) symmetry [19].

Now we apply these results to obtain the exact three-tangle
for those states.
We proceed as follows: first we analyze the simple case

of GHZ-symmetric two-qubit states for which we have full
quantitative knowledge due to the Wootters-Uhlmann
method [11,20]. We derive the convex roof for the con-
currence without referring to that method. Instead we use
the approach of the convex characteristic curve [21].
Subsequently we show that this procedure—GHZ symmet-
rization and quantification via the convex characteristic
curve—can be generalized to the three-qubit case and
present exact results for the three-tangle, in particular for
the three-qubit generalized Werner states.
GHZ symmetry for two qubits.—In the following two

sections we will consider exclusively states of two qubits.
A common choice for a maximally entangled two-qubit
basis is given by j��i ¼ 1ffiffi

2
p ðj00i � j11iÞ and j��i ¼

1ffiffi
2

p ðj01i � j10iÞ. The Werner state

� ¼ pj�þih�þj þ ð1� pÞ1414 (1)

(where 1
414 is the completely mixed two-qubit state and

0 � p � 1) has the following symmetries which, as we
will see, can be generalized to higher qubit number: in-
variance under (i) qubit permutations, (ii) simultaneous
flips of both qubits (i.e., application of �x � �x), and
(iii) z rotations of the form

U2qbð’Þ ¼ ei’�z � e�i’�z (2)

(where �j, j ¼ x, y, z denote the Pauli matrices). Now let

us find the family of all mixed states �S that obey the
symmetries (i)–(iii), which we will call henceforth ‘‘GHZ-
symmetric states.’’ The only nonvanishing matrix elements
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are �S
00;00 ¼ �S

11;11, �S
01;01 ¼ �S

10;10, and the real off-

diagonal elements �S
01;10 ¼ �S

10;01. Due to the normaliza-

tion constraint, the family is characterized by only two real
parameters:

xð�SÞ ¼ 1
2½h�þj�Sj�þi � h��j�Sj��i� (3)

and

yð�SÞ ¼ 1ffiffiffi
2

p
�
h�þj�Sj�þi þ h��j�Sj��i � 1

2

�
; (4)

whose scale we choose such that the Hilbert-Schmidt
metric dðA; BÞ2 � 1

2 trðA� BÞyðA� BÞ coincides with

the Euclidean metric in the xy plane. The family of �S is
equal to the set of all convex combinations of the three
states j�þih�þj, j��ih��j, and 1

2 ðj�þih�þj þ j��i�
h��jÞ and can be represented by a triangle in the xy plane
(Fig. 1).

Concurrence for two-qubit GHZ-symmetric states.—
Entanglement in pure two-qubit states jc i can be quanti-
fied by the concurrence C ¼ jhc �j�y � �yjc ij and for

mixed states � through the convex-roof extension [10]

Cð�Þ ¼ min
all decomp:

X
pjCðc jÞ; (5)

i.e., the minimum average concurrence taken over all
possible decompositions � ¼ P

pjjc jihc jj into pure

states. There exists always at least one optimal decompo-

sition fpopt
j ; c opt

j g of � for which the average concurrence is

equal to the minimum Cð�Þ.

In order to calculate the concurrence for two-qubit
GHZ-symmetric states �S, we apply the method of the
convex characteristic curve [21], which relies on the fact

that all states c opt
j of the optimal decomposition are linear

combinations of the elements of any other pure-state de-
composition of �. From such superpositions we determine
first a lower bound for the concurrence of � that exists by
virtue of the restrictions on a pure state � from being part
of a decomposition of �. In the second step, we show that
this lower bound actually equals the correct concurrence.
The method of convex characteristic curves is easiest

applied to a one-parameter manifold. Therefore we con-
sider special directions in the xy plane along which we
determine these curves. An appropriate choice are all
straight lines starting at the lower corner of the triangle

(x ¼ 0, y ¼ �1=ð2 ffiffiffi
2

p Þ) connecting it with the upper hori-
zontal line (Fig. 1). Each straight line is defined by its
parameter u, whose geometrical meaning is that the x
coordinate of the intersection with the horizontal line is
given by x ¼ u2 � 1=2. A convenient parametrization for
the states� in the decompositions of GHZ-symmetric two-
qubit states �S along the u direction is then

j�i ¼ ffiffiffi
z

p ½uj�þi þ vj��i� � ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p ½aj01i þ bj10i�
(6)

with real parameters u2 þ v2 ¼ 1, a2 þ b2 ¼ 1, and z
running from 0 to 1. The corresponding concurrence for
a given direction u and fixed value of z is

Cðu; zÞ ¼ jzð2u2 � 1Þ � 2abð1� zÞj: (7)

The characteristic curve ~Cðu; zÞ is obtained by minimizing
over a. Here, it is not difficult to see that the minimum can
be obtained by considering only real parameters u, v, a,

and b [22]. We find ~Cðu; zÞ ¼ maxð0; 2zu2 � 1Þ in u
direction. The set of curves for all values of u forms a
surface that is convex and therefore represents a lower
bound to the concurrence [21]. Straightforward coordinate
transformation leads to the final two-qubit result (first
obtained in Ref. [7])

Cðx; yÞ ¼ maxð0; 2jxj þ ffiffiffi
2

p
y� 1

2Þ: (8)

This is not just a lower bound—it actually is the concur-
rence for GHZ-symmetric two-qubit states. We prove this
by providing a decomposition that realizes the minimum
for each state �Sðx0; y0Þ above the separability line. An
example is

�Sðx0; y0Þ ¼ ð2jx0j þ
ffiffiffi
2

p
y0 � 1

2Þj�þih�þj
þ ð32 � 2jx0j �

ffiffiffi
2

p
y0Þ�Sðxsep0 ; ysep0 Þ; (9)

where �Sðxsep0 ; ysep0 Þ is the state at the intersection of the

separability line (Fig. 1) and the line that passes through
�þ and �Sðx0; y0Þ. The concurrence of this decomposition
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FIG. 1 (color online). The convex set of GHZ-symmetric
density matrices �S for two qubits. The Bell states �þ and
�� form the upper corners of the triangle, while the equal
mixture of�þ and�� defines the lower corner. The completely
mixed state 1

414 is located at the origin. The border between

separable and entangled states is given by the separability line
ysep ¼ �ð 1

2
ffiffi
2

p � ffiffiffi
2

p
xÞ. The solid black line shows an example for

the directions characterized by u along which we parametrize the
concurrence in Eq. (7). The parameter z gives the position on that
line. Further, the red dotted line illustrates the convex combina-
tion for the decomposition (9) of the arbitrary state �Sðx0; y0Þ
indicated by a red dot.
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obviously equals Cðx0; y0Þ. This can be verified by apply-
ing the Wootters-Uhlmann method to �Sðx0; y0Þ.

GHZ-symmetry for three qubits.—Now we turn to con-
sider GHZ-symmetric three-qubit states whose properties
were described in Ref. [19]. As to the symmetry properties,
they are now (ii’) invariance under simultaneous flips of all
three qubits (i.e., application of ��3

x ) and (iii’) invariance
under z rotations

U3qbð’1; ’2Þ ¼ ei’1�z � ei’2�z � e�ið’1þ’2Þ�z : (10)

In full analogy to the two-qubit case, we obtain a family
of mixed three-qubit states �S described by two real
parameters

xð�SÞ ¼ 1
2½hGHZþj�SjGHZþi � hGHZ�j�SjGHZ�i�

(11)

and

yð�SÞ ¼ 1ffiffiffi
3

p
�
hGHZþj�SjGHZþi

þ hGHZ�j�SjGHZ�i � 1

4

�
(12)

with jGHZ�i ¼ ðj000i � j111iÞ= ffiffiffi
2

p
. This family can

again be represented with a triangle (Fig. 2). The three-
qubit generalized Werner states are given by

� ¼ pjGHZþihGHZþj þ ð1� pÞ1818 (13)

with the unpolarized state 1
818 and 0 � p � 1.

The central result of Ref. [19] was the determination of
the SLOCC classes of all states within the family, in
particular of the boundary xWðyÞ between W and GHZ
class states. The latter (which we refer to as the
‘‘GHZ=W line’’) is given by the parametrized curve

xW ¼ v5 þ 8v3

8ð4� v2Þ ; y ¼
ffiffiffi
3

p
4

4� v2 � v4

4� v2
; (14)

where y 	 1
2
ffiffi
3

p and�1 � v � 1. We recall that the Werner

states are of GHZ type for all p 	 pW ¼ 0:69554 . . .
Entanglement of three-qubit GHZ-symmetric states.—

Our goal is now to quantify the tripartite entanglement in
the GHZ-type states of Fig. 2. The appropriate entangle-
ment measure for pure states c is the three-tangle [8]

�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������

X
j¼0;x;z

hc �j�j��y��yjc ihc �j�j��y��yjc i
��������

vuut

with �0 � i12. Its convex-roof extension is defined in
analogy with Eq. (5). Note that we use the square root of
the original residual tangle in Ref. [8] because then it is a
homogeneous function of degree 2 in the coefficients of c ,
and its convex roof has peculiar scaling properties that
facilitate further application of our results (see Ref. [13]).
In order to find the convex roof of �3, we use again the

convex characteristic curves and follow the procedure that
we have applied before to two-qubit states. The starting
point is to choose a set of straight lines along which we
determine the decompositions of �S and parametrize their
elements. It turns out advantageous to decompose �S into
GHZþ and the states along the lower left border of the
triangle (Fig. 2). The pure states� in those decompositions
can be represented as

j�i ¼ ffiffiffi
z

p jGHZþi�
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p ½qjGHZ�iþ rðaj001iþbj010i
þ cj100iþdj011iþ ej101iþfj110iÞ� (15)

with real numbers 0 � z � 1, q2 þ r2 ¼ 1, and a2 þ b2 þ
. . .þ f2 ¼ 1. The choice of q fixes the direction and z
determines the position on that line. Then we find for the
three-tangle of such a state �

�23ðq; zÞ ¼ j½z� ð1� zÞðq2 þ 2r2ðafþ beþ cdÞÞ�2
� 16ð1� zÞ2r4ðafbeþ afcdþ becdÞ
� 8

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p
3r3ðabd½ ffiffiffi

z
p þ q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p �
þ cef½ ffiffiffi

z
p � q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p �Þj; (16)

which we want to minimize for any fixed values of z and q.
Due to the symmetry x $ �x, we may assume z 	 1=2. In
analogy with the two-qubit case, it is sufficient to consider
only real parameters in Eq. (15) since the minimum of the
right-hand side in Eq. (16) is attained for real values of
a; . . . ; f; q; r (for the proof, see Ref. [22]). Moreover, the
structure of Eq. (16) shows that extremal values obey the
conditions a ¼ b ¼ d and c ¼ e ¼ f.
The surprising consequence of the preceding argument

is that the minimum ~�3ðq; zÞ, and thus the characteristic
curves, can be found in a one-parameter minimization. The
result for each fixed value of q is a function of z that
vanishes for z � zWðqÞ, where zWðqÞ is the z value for

S

xW

yW

z
zW q

q2

GHZGHZ

1 4 3

3 4

1

2

1

2

x

y

FIG. 2 (color online). The set of GHZ-symmetric three-qubit
states [19]. The states GHZþ and GHZ� form the upper corners
of the triangle, the lower corner is the symmetrization of j001i, and
the mixed state 1

818 is located at the origin. The generalized

Werner states lie on the line y ¼
ffiffi
3

p
2 x (magenta solid line). The

border between W-class (yellow area) and GHZ-class states
(brown area) is given by the GHZ=W line (red solid line),
Eq. (14). The directions along which we parametrize the states
using q and z in Eq. (15) are indicated by the black solid line. A
state �Sðx0; y0Þ with nonvanishing three-tangle (19) can be de-
composed according to Eq. (18), illustrated by the red dotted line.
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which the line determined by q intersects the GHZ=W line
(Fig. 2). For zWðqÞ< z � 1 this function lies above the
piecewise linear function

��3ðq; zÞ ¼
8<
:
0 for 0 � z � zWðqÞ
z�zW ðqÞ
1�zW ðqÞ for zWðqÞ< z � 1:

(17)

Therefore ��3ðq; zÞ is the function convex hull of ~�3ðq; zÞ for
any fixed value q and represents the convex characteristic
curve. The surface formed by the entire set of convex
characteristic curves ��3ðq; zÞ, 0 � q � 1, shown in

Fig. 3, is convex from below. Therefore, it fixes at least a
lower bound to the three-tangle of the states �S.

The final step in our derivation is to show that we can
always find a decomposition that realizes the value ��3
assigned by Eq. (17) to each state �S. As before, we
provide an example decomposition. Assume we are given
an arbitrary state �Sðx; yÞ. It has nonvanishing three-tangle
only if it is located above theGHZ=W line in Fig. 2. This is
because all states in the area below are locally equivalent to
the W state or are (bi-)separable and therefore have no
three-tangle [19].

Hence assume that �Sðx; yÞ lies above the GHZ=W
line. Its z and q values can be computed from the

coordinates via z ¼ xþ ð ffiffiffi
3

p
=2Þyþ 1=8 and q ¼ ð ffiffiffi

3
p

yþ
1=4� zÞ=ð1� zÞ. An obvious decomposition is

�Sðx; yÞ ¼ z� zWðqÞ
1� zWðqÞ jGHZþihGHZþj

þ 1� z

1� zWðqÞ�
SðxWðqÞ; yWðqÞÞ; (18)

where �SðxWðqÞ; yWðqÞÞ is the state at the intersection point
of the GHZ=W line with the straight line that contains
GHZþ and �Sðx; yÞ. The average three-tangle of the de-
composition Eq. (18) clearly coincides with the value
obtained from the convex characteristic curve ��3ðq; zÞ.
Consequently, the surface given by ��3ðq; zÞ in Eq. (17) is

identical to the convex roof of �3 for GHZ-symmetric
three-qubit states and is the main result of our work. We
can restate it in terms of the coordinates (x, y) in the
following way. Given a GHZ-symmetric three-qubit state
�S with coordinates (x0, y0), one first determines the

straight line that connects the GHZþ state at (1=2,
ffiffiffi
3

p
=4)

with the point (x0, y0). Next, one finds the intersection
point (xW0 , y

W
0 ) of this line with the GHZ=W line. Then the

three-tangle �3ð�Sðx0; y0ÞÞ is given by

�3ðx0; y0Þ ¼
8><
>:
0 for x0 < xW0 and y0 < yW0
x0�xW

0
1
2�xW

0

¼ y0�yW
0ffiffi

3
p
4 �yW

0

otherwise:

(19)

The most interesting GHZ-symmetric states are the gener-
alized Werner states. Their three-tangle is

�Werner
3 ðpÞ

¼
8<
:
0 for p� pW ¼ 0:69554 . . .
p�pW

1�pW

 3:2845p� 2:2845 for pW <p� 1:

(20)

Conclusion.—We have discussed the quantification of
mixed-state entanglement in GHZ-symmetric states for
two and three qubits by using the method of convex
characteristic curves [21]. Our first important result is
that we could derive the entanglement in these full-rank
mixed states for two qubits without reference to the
Wootters-Uhlmann method. This indicates how powerful
the approach is. In fact, subsequently we have applied it to
three-qubit GHZ-symmetric states and could derive the con-
vex roof of the three-tangle. In particular, we have quantified
exactly the tripartite entanglement in three-qubit generalized
Werner states, which will help to provide new insight into the
quantitative theory of multipartite entanglement.
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