
Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment

Michael A. Hohensee,1,* Brian Estey,1 Paul Hamilton,1 Anton Zeilinger,2 and Holger Müller1

1Department of Physics, University of California, Berkeley, California 94720, USA
2University of Vienna and Institute of Quantum Optics and Quantum Information, Austrian Academy of Sciences, 1090 Wien, Austria

(Received 22 September 2011; published 7 June 2012)

We propose a feasible laboratory interferometry experiment with matter waves in a gravitational

potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of

these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any

classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation)

of clocks ticking at the atom’s Compton frequency. In analogy to the Aharonov-Bohm effect in

electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not

the classical forces.
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The wave function of a particle in an interferometer is

measurably phase shifted by �A ¼ � e
@

R
~A � d~l or �V ¼

e
@

R
Vdt in the presence of a vector potential ~A or an

electrostatic potential V, even in the absence of any
classical force. This is the essence of the Aharonov-
Bohm (AB) effect [1–3], which has been closely scruti-
nized and verified experimentally [4–7]. Gravitational
analogs, broadly defined as phase shifts due to a gravita-
tional potential U in the absence of a gravitational force
[8,9], have also been of great interest, but to date no
experimental realization of a gravitational AB effect
[13,14] has been suggested that would produce a signal
of measurable size. Here, we suggest a feasible experi-
ment (Fig. 1), using matter waves to probe the proper time
in a multiply connected region of space-time comprised
by two arms of an interferometer (Fig. 2) in which the
force caused by artificial gravitational field-generating
masses vanishes. Using cold atoms, even the minuscule
gravitational potential difference �U=c2 � 1:6� 10�27

(Fig. 1) will produce a measurable phase difference
[15,16] �G ¼ !C

Rð�U=c2Þdt, owing to the long

(� 1 s) coherence times possible in such a system, and
the large value of the atom’s Compton frequency, !C ¼
mc2=@. This phase shift is identical to that which accu-
mulates between two clocks oscillating at !C that record
the proper time along each arm of the interferometer, and
is naturally described as such in the context of general
relativity. The experiment can also measure the time-
dilation phase �T ¼ � 1

2!C

R
�ðv2Þ=c2dt of moving

wave packets, similar to what has been demonstrated for
trapped ion clocks [17]. It will thus show that matter-
waves indeed accumulate phase at the Compton fre-
quency, modified by the local gravitational potential and
time dilation, rather than simply moving in response to
the local gravitational acceleration.

The phase measured by Mach-Zehnder matter-wave
interferometers built so far (e.g., [18–20]) can be described

by three effects—the wave packet’s integrated gravita-
tional redshift �G, time dilation �T , and interactions
with the diffraction gratings (e.g., standing light waves or
a crystal). These effects are related to one another as
1:� 1:1, and only their sum is observed [15,16,21–23].
Thus, it is possible to view the interferometer as a mea-
surement of the gravitational redshift caused by the gravi-
tational potential between two Compton frequency
oscillators [15,16], or to ignore the Compton frequency
dynamics of the wave packet, and even deny its physical
relevance [21–23]. In the latter picture, the measured phase
is ascribed to the phase of the gratings at the positions of
the wave packets when interacting; the interferometer is
thus argued to be a measurement exclusively of the wave
packet’s acceleration of free fall ~g in response to the
gravitational force. These two views mirror the discussion
on the influence of forces and potentials in quantum

FIG. 1 (color online). Setup. The source masses (radius
R ¼ 1 cm, density � ¼ 10 g=cm3) are separated by L ¼ 3 cm.
Wave packets are at saddle points of the potential UðxÞ, sepa-
rated by s ¼ 1:38 cm. The gravitational phase shift in rad/s is
plotted for cesium atoms, for which !C=ð2�Þ ¼ 3� 1025 Hz.
For L ¼ 3R, the gravitational potential difference is �U ¼
1:11�Gs2. L ¼ 2:61R, s ¼ 1:14R yields the largest �U for a
given s, �U ¼ 1:17G�s2.

PRL 108, 230404 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
8 JUNE 2012

0031-9007=12=108(23)=230404(5) 230404-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.230404


mechanics which surrounded the original Aharonov-Bohm
paper [2]. The gravitational AB effect arises from �G in
the absence of a gravitational acceleration ~g and will
conclusively show that the influence of the gravitational
potential in quantum mechanics is physically relevant,
measurable, and needed to describe observations. It is
topological [24], i.e., impossible to ascribe to any local
effect such as a grating’s phase at certain locations, and
nondispersive [7], i.e., not arising from motion or distor-
tion of the wave packets. The influence of the gravitational
potential is identical to the gravitational redshift [15,16];
interpretations that discount this are incomplete.

Figure 1 shows two identical spheres whose combined
gravitational potential has a saddle point between the
spheres (xA ¼ 0) and another, lower potential saddle point
at �xB close to the individual spheres’ centers. An inter-
ferometer is formed by placing an atom of mass m into a
superposition of two quantum states at a time t0 (Fig. 2).
These states are then conveyed to the two saddle points by
moving optical lattices and held there for a time T ¼ t2 �
t1; during which they accumulate phase shifts �A, �B.
Interferometers making similar use of optical lattices
have already been demonstrated experimentally [25,26].
When the states are interfered at t3, the phase difference
�� ¼ �A ��B can be measured by detecting the popu-
lation in the outputs of the interferometer, which is given
by cos2��=2. The gravitationally induced phase differ-
ence produced by the source masses is ��G ¼ m�UT=@,
and is analogous to the electrostatic AB effect [3]. For a
given separation s between the potential maximum and
minimum along the axis separating the masses, with
L ¼ 3R and R ¼ 0:72s, the gravitational phase shift is

��G ¼ 0:16

�
s

cm

�
2
�

�

10 g=cm3

��
m

mCs

��
T

s

�
; (1)

where mCs is the mass of Cs atoms.
To derive this phase shift, consider an experiment with-

out the source masses. We assume that the wave packets
jc Aðt1Þi and jc Bðt1Þi at t1 are concentrated near xA and xB,

respectively (Fig. 2) and are eigenstates of a Hamiltonian
HA;B describing all relevant potentials, in particular, the

optical lattice and Earth’s gravity. Since the Hamiltonian is
time independent between t1 and t2, the time evolution is
simply

jc A;Bðt2Þi ¼ eði=@ÞHA;BTjc A;Bðt1Þi: (2)

When the states interfere with each other at t3, a phase
difference �0 is measured that results from the combina-
tion of all influences on the atom between t0 and t3.
Now consider the experiment with the source masses

being brought in at t1 and removed at t2 (for simplicity, we
neglect the time these processes require, although as we
shall see, this need not be assumed to demonstrate the
gravitostatic AB effect). Once in place, the masses apply
no potential gradients or forces to the wave packets, pro-
vided that the wave packet is much smaller than the
masses. They will thus not change the shape or location
of the wave packets. The time evolution is now

jc A;Bðt2Þi ¼ eði=@Þ½HA;BTþmUðxA;BÞT�jc A;Bðt1Þi: (3)

If these states are interfered at t3, they will have picked up
an additional relative phase

�G ¼ m�UT=@: (4)

To illustrate the utility of a matter wave packet as a clock
in general relativity, we recall that the proper time expe-
rienced by a clock moving with velocity v at a location
xðtÞ relative to a resting observer at x ¼ 0 is given by
(see, e.g., [16])

� ¼
Z �

UðxÞ �Uð0Þ
c2

� 1

2

v2

c2

�
dt; (5)

to leading order in the gravitational potential U and the
velocity v. We now consider a pair of clocks ticking at a
proper frequency of ! that are moved along the atom’s
paths. They are initially synchronized at t0 and are com-
pared at t3. The clocks register a proper time difference

��0 ¼ 1

c2

Z
½U0ðxAÞ �U0ðxBÞ�dt; (6)

where the kinetic term vanishes because of the symmetry
of the trajectories. The notation �0,U0 indicates that these
quantities are measured in the absence of the source
masses. Adding the source masses changes the proper
time difference by��G ¼ �UT=c2. (As above,�U refers
to the potential difference caused by the source masses
between the clock’s locations.) For a clock frequency !,
the source masses give rise to an additional phase shift

��G ¼ !��G ¼ !�UT=c2: (7)

This phase shift is identical to the phase shift [given in
Eq. (4)] that the masses induce on matter waves, provided
that we substitute ! ¼ !C. At this, and only this fre-
quency, a clock will acquire the same phase as a matter

x 

t 
t0 t1 t2 t3 

xA 

xB 

FIG. 2 (color online). Atom’s trajectories versus time. The
motion of one pair of test masses is sketched; the other pair
(above xA) is not shown.
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wave, and will do so in any gravitational potential,
moving along any trajectory. This is no coincidence:
the expressions (2)–(4)) follow from a path integralR
DqeiSðq; _qÞ=@, where

S=@ ¼ mc2

@

Z
d� ¼ !C

Z 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��dx

�dx�
q

: (8)

All gravitational effects are described by the dimension-
less metric tensor g�� ¼ ��� þ h��, where ��� is the

Minkowski metric, and h�� is the dimensionless gravita-

tional strain tensor. The weak gravitational field (with
Newtonian potential U) enters the above expression for
d� via h00 ¼ 2U=c2, and so any local description of the
gravitationally induced phase shift of a massive particle
must be proportional to !Ch00dt. The Hamiltonian
formulation leading to Eq. (4) has been shown to be
equivalent to the relativistic dynamics of matter waves,
oscillating at !C [27], propagating in curved space-time
in the weak field limit (see Appendix A in Ref. [28]). The
nonrelativistic treatment can also be used to derive the
same interferometer phase difference, and would attribute
it to the product of the atoms’ mass with a dimensionful
Newtonian potential. The relativistic theory [Eq. (8)],
however, describes matter waves as clocks that tick at
the atoms’ Compton frequency [15,16].

Were this force-free gravitational redshift, or gravito-
static AB effect, to be measured by atomic clocks, it would
require km-sized source masses. Alternatively, clocks
could be located at different Lagrange points of the
Earth-Moon system. Laboratory-scale tests, however, can
make use of matter-wave clocks.

Since we cannot turn off Earth’s gravity, a true type I AB
test (characterized by the complete elimination of any
force acting on the wave packet [3]) would only be realiz-
able in microgravity. Nevertheless, as derived above in
Eqs. (2)–(4), such an experiment can be approximated in
the laboratory using an apparatus to move the source
masses into place after the wave packets have reached their
respective holding positions xA and xB, with the masses’
trajectories selected such that they produce no significant
forces at any time. The effect of Earth’s gravity can then be
suppressed by comparing measurements made with and
without the source masses.

This gravitostatic AB effect is both nondispersive [7]
and topological [24]. The latter follows immediately from
the fact that the interferometer phase is proportional to the
line integral of a gauge-dependent integrand [24] (here, the
local gravitational potential). The sources’ force-free con-
figuration makes this even more obvious: no gravimeters
confined to the neighborhood of xA and xB could register
the masses’ presence.

Although the linear gradient of the field masses’ potential
vanishes at the saddle points, the curvature of their potential
can modify the quantum states of the atoms to produce
a dispersive phase shift. This, however, is negligible.

The dynamics of the atoms in the optical lattice potential
V can be approximated by a three-dimensional harmonic
oscillator with eigenfrequencies !2

i ¼ð1=mÞ@2V=ð@x2i Þ,
where xi ¼ x, y, or z. The time evolution of the eigenstates

is given by eiEht=@, where Eh ¼ P
i@!i=2. Adding the field

masses modifies the potential V ! mUþ V, and thus shifts
the !i by �!i ¼ ½1=ð2!iÞ�@2U=ð@x2i Þ to first order. This
causes a corresponding modification of the time evolution.
We note that this may vanish identically, if all !i equal one
another, by virtue of the Laplace equation r2U ¼ 0.
Otherwise, the change in the time evolution phase is on
the order of

�curv ¼ 2

3

�G�

!i

� 2� 10�6 rad=s; (9)

where the lowest (radial) !i=2�� 0:1 Hz was inserted for
a conservative estimate. This is negligible; it can also be
quantified and removed by varying the lattice depth, and
thus the !i.
Additional dispersive phase shifts could arise from

forces acting on the atoms. Because of the optical lattice,
a small residual force F will not cause a permanent veloc-
ity change, but only a shift �x in the expectation value of
the atoms’ position. If the lattice potential is �V0cos

2kx,
the shift amounts to �x ¼ F=ð2k2V0Þ, and the resulting
potential change of F2=ð4k2V0Þ causes a negligible phase
shift of

�F ¼ F2T

4k2V0@
: (10)

The dispersive phase due to Earth’s gravitational force
(Table I, line 6) can be suppressed by comparing the experi-
ment with and without field-generating masses. The phase
shift induced by the uncompensated force resulting from just
one of the source masses (line 8) is negligible. Dispersive
and force-related phase shifts produced while the source
masses and/or the wave packets are in motion are negligible
for similar reasons. Experimentally, this can be verified by
varying the time T (Fig. 2) while all other experimental
parameters are kept constant. Provided that any systematics
produced by the source masses themselves are sufficiently
small, this also means we can use fixed source masses
(i.e., a type II test), simplifying the experiment.
In type II electrostatic AB experiments [29], the elec-

trons encounter a nonvanishing force on part of their way.
This modifies the time spent on the trajectories and could
mimic the AB effect [30]. Our gravitostatic tests (type I
and II) are free of this loophole due to the trapping action
of the optical lattices. Gravitomagnetic forces caused by to
the motion of the source masses, too, can be neglected, as
they are suppressed by at least one power of their velocity
over c. Finally, the source masses’ gravitational potential
will phase shift the laser beams forming the optical lattice.
The light cone g��x

�x� ¼ 0 is given by gtt ’ 1� 2U=c2

and gxx ’ �ð1þ 2U=c2Þ, whereU is given both by Earth’s
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field and the source masses. Thus, the source masses will
fractionally shift the lattice at the order of�U=c2, which is
smaller than 10�25, producing negligible phase shifts.

Verification of Eq. (1) at the level of 10 standard devia-
tions will require systematic and technical errors to be
below about 30 mrad. Table I shows a number of potential
systematic effects. We assume that the x axis is vertical.
The leading two contributions to the background phase
�0 ¼ gs!CT=c

2 are Earth’s gravity (line 2), and the opti-
cal lattice potential. The latter is mostly common to both
arms of the interferometer (line 3), but a differential shift
of �2V0Txws=ðz2R@Þ, where zR ¼ �w2

0=	 is the beam’s

Rayleigh range, remains due to the diffraction of the
Gaussian beam, if the lattice beam waist is located at xw �
0. We assume V0=h ¼ 100 kHz, xw ¼ 0� 1 mm, an 1=e2

intensity radius of w0 ¼ 0:5 mm, and 	 ¼ 852 nm
(line 4). The mean field shift due to atom-atom interactions
produces a measurable phase shift proportional to the
difference �n between the atomic densities in the interfer-
ometer arms (line 5). We assume n ¼ 2� 109 cm�3,
�n=n � 0:016, and a scattering length a ¼ 3000aB, where
aB � 5:3� 10�11 is the Bohr radius. Effects that are in-
dependent of the source masses can be suppressed by
comparing the phase with and without source masses.
The required stability and resolution of parts in 109 has
already been demonstrated in atom interferometers
[31,32]. If needed, further suppression can be achieved
with paired cointerferometers [33]: one interferometer
measures the gravitational phase due to the source masses
while a second, without source masses, simultaneously
measures the background phase for subtraction. If con-
trolled by the same laser beams, the two interferometers
can be identical to high precision. An effect correlated to
the source masses arises from Zeeman shifts due to resid-
ual magnetism of the masses (Table I, line 9). To minimize
it, we choose mF ¼ 0 quantum states. Since residual iron
content of the source masses may be suppressed to the level
of parts per million, they will not be ferromagnetic.

Magnetic shielding can be enhanced by a thin tube of mu
metal (also serving as an electrostatic shield), and can be
used to shield the entire apparatus.
The experiment can also measure the time dilating effects

due to relative motion [the second term in Eq. (5)] on the
phase of a matter-wave clock [27]. This is accomplished by
moving one of the wave packets periodically, so that xðtÞ !
x0ðtÞ þ A sin!t, where x0ðtÞ is the atoms’ equilibrium po-
sition, A an amplitude, and! a frequency. This will produce
a total phase shift of !C �v

2T00=ð2c2Þ ¼ !CA
2!2T00=ð4c2Þ,

where T00 is the total duration of the oscillation. For A ¼
0:1 �m, !=ð2�Þ ¼ 1 kHz, and Cs atoms, this phase is
207 rad per second. This oscillation can be induced by
adiabatically shaking one of the optical lattices while the
atoms are in motion (Fig. 2); between t2 and t3, the two
optical lattices become degenerate and it will not be possible
to shake one wave packet without shaking the other.
Alternatively, causing the two wave packets to have unequal
laboratory-frame velocities while in motion will also pro-
duce such a time-dilation phase. (As before, the fact that this
phase can be derived from the Schrödinger equation is
compatible with the fully relativistic picture [27,28].) By
separately confirming the time dilation and gravitational
redshift effects, this test will firmly establish the equivalence
between matter waves and clocks.
The gravitostatic AB effect considered here requires that

there be no classical forces acting on the atoms, which is
equivalent to vanishing Christoffel symbols in the atom’s
rest frame. Other definitions [10–12] go further and require
a vanishing Riemann tensor. Since the Riemann tensor
does not vanish in our experiment, rapidly moving particles
may still feel a force, though the force acting on the atoms
at rest is zero.
We have described an experiment that can unambigu-

ously demonstrate that matter waves are clocks that can be
used to measure the gravitational redshift caused by the
gravitational potential, and not merely rocks that provide
quantum measurements of the gravitational acceleration: a
matter wave is subject to the same gravitational redshift
and time-dilation effects that apply to a conventional clock,
even if it is constrained to a space-time region of vanishing
gravitational force. This will be the first demonstration of a
force-free gravitational redshift, and the first experimental
demonstration of a gravitostatic Aharonov-Bohm effect.
The effect is nondispersive and topological, and thus im-
possible to ascribe to any local influences on the wave
packet. While the proposed experiment would benefit
greatly from being performed in microgravity, as this
would strongly suppress the background phase due to the
Earth’s field and permit increased interaction times, it can
nevertheless be realized in a terrestrial laboratory. The
experiment will separately demonstrate the effect of
time-dilation on matter-wave clocks.
We are indebted to S. Chu and M. Peshkin for important

discussions, to J.M. Brown for careful reading of the

TABLE I. Contributions to the signal. Quantities marked (*)
are common to each arm of the interferometer and cancel out;
those marked (**) are independent of the source masses and can
be removed by running with and without the source masses. We
assume the dimensions stated in the caption of Fig. 1 and in the
text, and T ¼ 1s.

Source Phase (rad)

1 Gravitostatic AB Equation (1) 0:3
2 Earth’s gravity** gs!CT=c

2 2:8� 108

3 Lattice shift* V0T=@ 6� 105

4 Differential lattice shift** See text 0� 0:02
5 Mean field** 4�@að�nÞT=m 0.03

6 Dispersive (Earth’s gravity)* Equation (10) 0.26

7 Quadratic potential shift Equation (9) 2� 10�6

8 Dispersive (field mass) Equation (10) 2� 10�8

9 Magnetic fields (1 mG) 430 Hz
G2 ð�BÞ2T 2� 10�5
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