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Observation of the Intrinsic Abraham Force in Time-Varying Magnetic and Electric Fields
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The Abraham force exerted by a time-dependent electromagnetic field on neutral, polarizable matter
has two contributions. The one induced by a time-varying magnetic field and a static electric field is
reported here for the first time. We discuss our results in the context of the radiative momentum in matter.
Our observations are consistent with Abraham’s and Nelson’s versions for radiative momentum.
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The Abraham force is the force exerted by a time-
dependent electromagnetic field on neutral, polarizable
matter, and has been debated for over a hundred years.
The macroscopic Maxwell’s equations provide a continu-
ity equation for electromagnetic momentum that takes the
general form

3G +V-T=f, (1)

with G ““some” electromagnetic momentum density, f;
some force density exerted on the radiation, and T
“some’” stress tensor. The apparent arbitrariness in assign-
ing expressions for G, T and f; is known as the Abraham-
Minkowski (AM) controversy. (For reviews see, e.g.,
[1,2]). In the Minkowski version one adopts G = G, =
D X B and Maxwell’s equations lead to f;(M)=
eo(Ve,)E2 + uy'(Vu, B2 ie., there is no force pro-
portional to both the electric and magnetic fields. The
Abraham version insists on a momentum proportional to
the energy flow so that G = G, = gquoE X H, in which
case the Abraham force density takes the form f;(4) =
f,(M) — eo(e, — 1/u,)9,(E X B). The second term
on the right hand side will be referred to as the
“Abraham force density”. Other versions can be found
in the literature, such as Peierls’ proposition f;(P) =
go(e, — 1)(0,E X B — 1E X 9,B), in which case the full
time derivative of the Abraham version has disappeared
[3]. In the Einstein-Laub version the force f; achieves a
gradient, i.e., a part of V - T. For the homogenous case,
which we will consider for the remainder, the Einstein-
Laub version is equivalent to the Abraham version.

In this work we will measure explicitly the force exerted
on matter by a combination of a time-dependent electric
field E(7) and a time dependent magnetic field B(z). The
Newton-Lorentz force on an object with mass density p is
unambiguously given by pd,v = p E +J, X B, with p,
the charge density, J, the charge current density, and v the
velocity. Under the assumption of macroscopic fields and
in the absence of free charges and currents [4], it can be
cast in the form [5]
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p6,v+V-W= f2, (2)

with W another stress tensor and f, = —f,(M)+
go(e, — 1)9,(E X B). Since W vanishes outside the object
one identifies F = [f,dV as the force exerted by the
electromagnetic field on the matter. From Newton’s third
law one expects that f; = —f,. This is not valid for neither
the Minkowski nor the Peierls version, and is true only for
the Abraham version if u, = 1. The version for which
Newton’s third law strictly holds is the Nelson version
[6], in which the radiative momentum density is chosen
as G = Gy = gy)E X B, i.e., equal to the expression in
vacuum.

When taking a quantum-mechanical approach to the
problem, new controversies seem to appear. It is well
known that the presence of magnetic fields makes the
kinetic momentum Py, = Y ,;m;¥; different from the con-
jugated momentum P = Py, + 1% ,4;B X r;. This differ-
ence was recently put forward as a solution to the AM
controversy [7]. However, in quantum mechanics a third
“pseudo-momentum” K = Py, + > ,¢;B X r; appears
that is conserved in time [8], and is clearly different from
the other two. It is easy to verify that the validity of the
Nelson version is directly related to the conservation of K.
A second controversy was initiated by Feigel [9] who
argued that the quantum vacuum provides an additional
contribution to the Abraham force. This proposition was
refuted theoretically [8] and experimentally [10].

The experimental observation of the Abraham force
induced by an oscillating electric field and a static mag-
netic field was reported by James [11] and by Walker et al.
[12,13] in solid dielectrics, and recently by Rikken and van
Tiggelen in gases [10]. These observations clearly invali-
dated the Minkowski version for f, although modifications
of the Minkowsi energy-momentum tensor have been pro-
posed to make it consistent with these results [14,15].
However, the Abraham force due to an oscillating
magnetic field and a static electric field has so far never
been observed and was even reported unobservable in a
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specifically designed experiment [16,17]. The two cases
clearly correspond to physically different situations. A
time-dependent electric field creates moving charges (J, =
d,P) that are subject to the Lorentz force. A time-varying
magnetic field induces a rotational electric field that acts on
the polarization charges. Walker et al. suggested an expla-
nation for their failure to observe the E X d,B component
[18] that involves the compensation of this bulk component
by a surface contribution. The current experimental situ-
ation surrounding the AM controversy for low-frequency
electromagnetic fields is therefore unsatisfactory as not a
single prediction for the Abraham force has been experi-
mentally confirmed. At optical frequencies the situation is
even less clear. Here, the Abraham force cannot be ob-
served directly, as it averages to zero over one cycle, and
one has to resort to the observation of momentum transfer
from light to matter, with the aforementioned conceptual
difficulty of which type of momentum to consider. For
recent discussions, see the two comments [19] on the
work of She ez al. [20].

In this Letter, we report the first observation of the
intrinsic Abraham force on a dielectric induced by a
time-varying magnetic field. Our observations reveal the
symmetry between electric and magnetic variations; i.e.,
we confirm f « 9,(E X B), excluding the Peierls’ version
of radiative momentum, and in particular confirming the
Abraham and Nelson versions. We cannot discriminate
between the latter two, as u = 1 in our case. On the
theoretical side, our finding supports the dominant role of
pseudo-momentum in the controversy on radiative mo-
mentum, and not the one of kinetic or conjugated momen-
tum as was suggested by other work [7].

FIG. 1. Schematic setup of the experiment. A magnetic field B
is applied perpendicular to the drawing at frequency wp, and
high voltage at frequency wy is applied to the electrodes of the
sample. The cantilever signal is phase sensitively detected at the
sum frequency wp + wg. Typical sample size is 9 X 2 X
0.35 mm?. PSD stands for phase sensitive detector.

A schematic view of our experiment is shown in Fig. 1.
The sample consists of a slab of Y5V dielectric recovered
from a ceramic capacitor [21] (measured &, = 1.7 X 10°).
It is covered on both faces by a silver-paint electrode and
mounted by means of an insulating spacer on a piezo-
electric bimorph cantilever [22]. The sensitivity of the
cantilever was determined by applying a known force to
the sample and measuring the charge generated by the
cantilever with an electrometer. An oscillating magnetic
field B coswpt is applied perpendicular to the electric field
Ecoswgt inside the slab. The cantilever signal is phase
sensitively detected at wy + wp and corresponds therefore
to a force on the sample proportional to E(7) X B(z). All
other possible forces that would result from field gradients
give a net zero contribution because of the symmetry of our
experimental geometry and appear at other frequencies
[see Eq. (1)].

A typical result is shown in Fig. 2. A clearly linear
electric and magnetic field dependence of this force is
observed, which we therefore identify as the Abraham
force. The linear dependence of F, = f,V, where V is
the sample volume, on the frequency of the electric field,
crossed with a static magnetic field, was explicitly verified
by Rikken and van Tiggelen [10], i.e., F, = 9,E X B.
To investigate the dependence of F, on the magnetic
field variation in time, we have varied wp whilst keeping
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FIG. 2. Abraham force exerted on a slab of Y5V dielectric by
crossed oscillating electric and magnetic fields (f; = w,/2).
Straight lines are linear fits to the data.

230402-2



PHYSICAL

REVIEW LETTERS

week ending

PRL 108, 230402 (2012) 8 JUNE 2012
fe (Hz) S eeNEEEEREERREY o]
1600 1400 1200 1000 800 600 400 200 0 92
— Vate d ®sy| IS
o3
O %

B =36 mT, E=58 kV/m
50 -

Fa(nN)

25 1

0 200 400 600 800 1000 1200 1400 1600
fg (Hz)

FIG. 3. Dependence of the Abraham force on a solidly con-
tacted Y5V slab on the frequencies of the electric and magnetic
fields, while the sum frequency and the amplitudes are kept
constant. The solid line is a linear fit to the data. Note that the
intercept with the ordinate of the theoretical lines (dashed and
dot-dashed, see text) is subject to a systematic uncertainty of 5%.

wp T wg constant. This guarantees that the sensitivity of
our cantilever remains constant. The result is shown in
Fig. 3, and shows clearly a strictly linear dependence on
the electric field frequency. So we find quantitative
agreement with a prediction f, = gy(e, — 1)9,E X B
(dashed line) and not at all with the predicted f, =
go(e, —1)9,(E X B) (dot-dashed line) (u = 1 for Y5V).
From this, one could infer the absence of a contribution to
F, of the form E X 9,B. This concurs with the findings by
Walker et al. [16]. The explanation for the apparent ab-
sence of such a contribution is the almost complete com-
pensation of this contribution by an additional force on the
electrodes. Walker er al. [18] have proposed a description
for such a compensation in terms of the Maxwell stress
tensor. We propose a simpler explanation, based on the
different space charges present in the sample-electrode
system, as illustrated in Fig. 4. It can be easily shown for

the surface charge densities o, = €yeV/d = —o, and
o, = —€y(e — 1)V/d = — 0. The time varying magnetic
field induces an electric field E;,4 that obeys
[ Ejq-dl = fa,B - dS. 3)
s

The Abraham force on the dielectric due to a time varying
magnetic field corresponds to the force exerted by E;,q on
0, and o5 but it will be almost completely compensated by
the force exerted by E;,q on o, and oy, i.e., on the
electrodes. It follows that the force due to a time varying
magnetic field on the ensemble of electrodes plus dielectric
is only 1/(g — 1) of this force on the dielectric alone. It is
therefore very difficult to observe the E X d,B contribu-
tion to the Abraham force when the electric field is sup-
plied by electrodes that are fixed to the dielectric.

FIG. 4. Section of the sample + contacts, showing the differ-
ent surface charges.

In order to observe the intrinsic Abraham force on the
dielectric, including the E X 9,B contribution, we have
used a configuration where the electrodes are no longer
rigidly connected to the dielectric (Fig. 5). The electrodes
are fixed in the laboratory frame, and the sample is fixed to
the cantilever but otherwise free to move. The electrical
contact between sample and electrodes is provided by an
ionic liquid [23]. Now the ionic surface charges on the
liquid side of the liquid-sample interface (i.e., the equiv-
alents of o and o) that almost balance the surface
charges on the sample can move freely in the liquid along
the interface under the influence of E;y. They would
therefore in the ideal case not exert any force on the
sample. In practice such ionic movement will partially be
transferred to the sample by the inevitable viscous drag of
the liquid on the sample. Therefore, partial compensation
of the Abraham force on the sample may still occur in this
configuration, but it should be much weaker than for the
case of fixed electrodes. Such a drag could also transfer a
part of the Lorentz force F;, experienced by the ionic
current in the liquid, to the sample. It can be easily shown
that this Lorentz force is given by F; =IBl=
2w fyCVBI, where [ is the current passing through the
liquid, [ is the total thickness of the two liquid layers, C
the capacitance and V the applied voltage.

The result of the measurement of the Abraham force
with the liquid contacts is shown in Fig. 6 as a function of
the electric field frequency fg, where fr + fp is kept
constant. We clearly observe an Abraham force that does
not vanish for low f as in Fig. 3. The full symbols are the
raw data, and the open symbols are the data when corrected
for the measured resistive losses in the ionic liquid, which
somewhat reduces the electric field on the Y5V slab.
Currently we do not have a conclusive explanation for
the small remaining negative slope. Combined with the
earlier result that F4 « f5 for a constant magnetic field
[10], Fig. 6 proves that Fy « fp + fp = d,(E X B). For
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FIG. 5. Modified cantilever setup. Electrodes are fixed to the
lab frame, and electrical contact to the sample is provided by an
ionic liquid.
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FIG. 6. Abraham force measured on a Y5V slab, contacted by
an ionic liquid as illustrated in Fig. 5. fz + fp = 690 Hz. The
solid line is a linear fit to the raw data (closed symbols). The
dashed line is a linear fit to the corrected data (see text).

our parameters, the Lorentz force on the liquid is F; =
1.5 nN at fr = 100 Hz and it has the same sign as F. Its
contribution to the observed force on the sample can there-
fore be neglected at low f In the liquid contact configu-
ration, it is difficult to accurately determine the size of the
contacted area of the sample and thereby the absolute value
of the driving Abraham force density. From the measured
capacitance value we deduce a contacted area that would
result in an Abraham force of 15 nN, in reasonable agree-
ment with the observed value.

In conclusion, we have confirmed the suggestion by
Walker et al. [16,17] that in solidly contacted dielectrics,
the only measurable contribution to the Abraham force is
of the form 9,E X B. We have provided a simple explana-
tion for this apparent absence of a E X 9,B contribution in
terms of the compensating surface charge in the electrodes.
For a dielectric that is contacted by means of a conducting
liquid, we have observed the intrinsic Abraham force,
which we find to be proportional to 9,(E X B), thereby
explicitly verifying the Abraham and Nelson predictions of
the mechanical force density of electromagnetic fields in
dielectrics. This result greatly limits the arbitrariness in
Eq. (1), leaving only the possibility to assign terms derived
from Maxwell’s equations to either the momentum or the
stress tensor, but not to the force. In particular, our results
invalidate the Minkowski and Peierls versions of electro-
magnetic momentum. In the solution proposed by Barnett
[7] the Abraham version was associated with Kinetic
momentum, and the Minkowski version with canonical
momentum. We have argued that the Nelson version is

intimately related to a third pseudo momentum. To finally
discriminate between the two remaining candidates—the
Abraham and Nelson versions—one would have to dis-
criminate between (g, — 1/u,) and (g, — 1) as a prefactor,
which will be the subject of future work.
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