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Balance between Excitation and Inhibition Controls the Temporal Organization
of Neuronal Avalanches
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Neuronal avalanches, measured in vitro and in vivo, exhibit a robust critical behavior. Their temporal
organization hides the presence of correlations. Here we present experimental measurements of the
waiting time distribution between successive avalanches in the rat cortex in vitro. This exhibits a
nonmonotonic behavior not usually found in other natural processes. Numerical simulations provide
evidence that this behavior is a consequence of the alternation between states of high and low activity,
named up and down states, leading to a balance between excitation and inhibition controlled by a single
parameter. During these periods, both the single neuron state and the network excitability level, keeping
memory of past activity, are tuned by homeostatic mechanisms.
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Spontaneous neuronal activity can exhibit slow oscilla-
tions between bursty periods, or up states, followed by sub-
stantially quiet periods. Bursts can last from a few to several
hundreds of milliseconds and, if analyzed at a finer temporal
scale, have often shown a complex structure in terms of
neuronal avalanches. In vitro experiments record avalanche
activity [1,2] from mature organotypic cultures of rat soma-
tosensory cortex where they spontaneously emerge in super-
ficial layers. The size and duration of neuronal avalanches
follow power law distributions with stable exponents, which
is a typical feature of a system in a critical state, where large
fluctuations are present and the response does not have a
characteristic size. The same critical behavior has been mea-
sured in vivo from rat cortical layers during early postnatal
development [3], from the cortex of awake adult rhesus
monkeys [4] using microelectrode array recordings, as well
as for dissociated neurons from rat hippocampus [5,6] or
leech ganglia [5]. In vitro, quiet periods measured between
bursts, also called down states, can last up to several seconds.
The emergence of these down states can be attributed to
various mechanisms: a decrease in the neurotransmitter re-
leased, either due to the exhaustion of available synaptic
vesicles or to the increase of a factor inhibiting the release
[7], such as the nucleoside adenosine [8], the blockade of
receptor channels by the presence of external magnesium [9],
or else spike adaptation [10]. A down state is then charac-
terized by a disfacilitation; i.e., the absence of synaptic
activity of a large number of neurons causing long-lasting
returns to resting potentials [11]. Recently, it was shown
analytically and numerically that critical behavior [12] char-
acterizes up states, whereas down states are subcritical [13].

Whereas action potentials are rare during down states,
small amplitude depolarizing potentials, reminiscent of
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miniature potentials from spontaneous synaptic release,
occur at higher frequencies. The nonlinear amplification
of small amplitude signals contributes to the generation of
larger depolarizing events bringing the system back into
the up state, as observed in cortical slabs [14], dissociated
cultures [15], and slice cultures [16]. The analysis of the
amount of time striatal spiny neurons [17,18] and cortical
pyramidal neurons [19] spend at each value of the mem-
brane potential shows that both cell types toggle between
two preferred values [20]: a very negative one in the down
state and a more positive, depolarized one in the up state.
The up state being just a few millivolts from the action
potential threshold suggests that during the up state neu-
rons respond faster and more selectively to synaptic inputs.
For cortical neurons the up state would be a metastable
state; i.e., the membrane potential would soon decay down
to the resting potential value if network mechanisms would
not sustain the activity. The up state has, therefore,
network, rather than cellular, properties.

Here we focus on the temporal organization of neuronal
avalanches both in organotypic cultures and neuronal
networks simulations. Each avalanche i is characterized

by its starting and ending times, ¢! and tf . The temporal
organization is analyzed by evaluating the distribution of
waiting times Af; = i, | — tf . This is a fundamental prop-
erty of stochastic processes, widely investigated for natural
phenomena and able to discriminate between a simple
Poisson and a correlated process. Indeed, in the first case
the distribution is exponential, whereas it exhibits a more
complex behavior with a power law regime if correlations
are present. For a wide variety of phenomena, e.g., earth-
quakes and solar flares [21], human dynamics [22],
biological systems [23], etc., this distribution always
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shows a monotonic behavior. Recent results on freely
behaving rats provide a lognormal size distribution and a
monotonic waiting time distribution uniquely controlled
by the average occurrence rate [24]. Anesthetized rats,
conversely, exhibit a more heavy-tailed size distribution
and no universal scaling for the waiting time distribution.
Here we show that the waiting time distribution for neuro-
nal avalanches in vitro has an unusual nonmonotonic
behavior. Numerical simulations on neuronal networks
suggest that this is controlled by the slow alternation of
up and down states, which determines both the network
and the single neuron behavior.

Experiments were performed on coronal slices from rat
dorsolateral cortex (postnatal day 0-2; 350 wm thick)
attached to a poly-D-lysine coated 60-microelectrode array
(MEA; Multichannelsystems, Germany) and grown at
35.5°C in normal atmosphere and standard culture me-
dium without antibiotics for 4-6 weeks before recording.
Avalanche activity was measured from cortex-striatum-
substantia nigra triple cultures or single cortex cultures as
reported previously [1]. Spontaneous avalanche activity is
recorded outside the incubator in standard artificial cere-
brospinal fluid (laminar flow of 1 ml/ min) under station-
ary conditions for up to 10 h. The spontaneous local field
potential (LFP) is sampled continuously at 1 kHz at each
electrode and low-pass filtered at 50 Hz. Negative deflec-
tions in the LFP (nLFP) are detected by crossing a noise
threshold of —3 SD (~3-5 wV) followed by negative peak
detection within 20 ms. nLFP times and nLFP amplitudes
are measured. Neuronal avalanches are defined as spatio-
temporal clusters of nLFPs on the MEA [25]. A neuronal
avalanche consists of a consecutive series of time bins of
width &7 that contain at least one nLFP on any of the
electrodes. Each avalanche is preceded and ended by at
least one time bin with no activity. The waiting time At is
simply given by the number of empty bins between two
successive avalanches times 6z. Without loss of generality,
the present analysis is done with &t estimated for each
culture as the average inter-nLFP interval on the array and
ranged between 3—6 ms for all cultures.

In Fig. 1 we show the waiting time distribution for
different cultures of rat cortex slices. The curves exhibit
a complex nonmonotonic behavior with common features:
an initial power law regime and a local minimum followed
by a more or less pronounced maximum. The presence of a
power law implies that avalanche occurrence is not a pure
Poisson process; namely, successive avalanches are tem-
porally correlated [26]. Moreover, the nonmonotonic be-
havior is not usually observed in natural phenomena. In
order to investigate the origin of this behavior, we simulate
avalanche activity by a neuronal network model [27-29],
which is able to reproduce the scaling properties of neuro-
nal avalanches. Here we question whether and how the
complex temporal organization of avalanches can be
caused by the slow alternation between up states and
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FIG. 1 (color online). The distribution of waiting times for
seven different slices of rat cortex. All curves show an initial
power law regime between 10 and about 200 ms, with an average
exponent of 2.15 £ 0.32. For Ar > 200 ms, curves can become
quite different with the common characteristics of a local mini-
mum located at 200 ms <At,;, <1 s, followed by a more or
less pronounced maximum at Af=1-2s. In the insets: two
temporal sequences of neuronal activity for numerical (sum of
potential variations) and experimental (uV) data.

down states. The basic idea is that after a large avalanche
the involved neurons become hyperpolarized and the sys-
tem goes into a down state. Conversely, after a small
avalanche active neurons remain depolarized and the sys-
tem stays in an up state.

We consider N neurons at random positions, character-
ized by their potential v;. Neurons are connected by a
classical scale-free network [30], where a neuron i has an
outgoing connectivity degree k. Once the network of
output connections is established, we identify the resulting
degree of in connections k;, for each neuron. To each
synaptic connection we assign an initial random strength
gij» with g;; # g;;, and to each neuron an excitatory or
inhibitory character with 10% inhibitory synapses.
Whenever at a given time the value of the potential at a
site i is above a certain threshold, v; = v ., the neuron
sends action potentials which arrive to each of the ko,
presynaptic buttons. As a consequence, the total charge
entering the connected neurons is g; vk, as in a firing
rate based charge distribution. Each neuron receives charge

in proportion to the synaptic strength g;;, v;(r+ 1) =
v;(1) £ qk’l—f") %, where the sum is on all outgoing con-
J kST

nections of i. Here the membrane potential variation is
obtained by dividing the received charge by the surface
area of the soma of the postsynaptic neuron, proportional
to the number of ingoing terminals ;, . The plus or minus
sign is for excitatory or inhibitory g;;, respectively. After
firing, a neuron is set in a refractory state lasting 1 time step
(about 10 ms), during which it is unable to receive or trans-
mit any charge. At the end of an avalanche, we implement
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Hebbian plasticity rules: the strength of the used connec-
tions between active neurons is increased proportionally to
the activity of the synapse [31]; namely, the membrane
potential variation of the postsynaptic neuron, g;;(t + 1) =
gij(t) + (v;(t + 1) — v;(1))/vpa. Conversely, the strength
of all inactive synapses is reduced by the average strength
increase per bond, Ag = 3¥';;,8¢;,(¢)/N,, where N, is the
number of bonds. The presence of both strengthening and
weakening rules implements a homeostatic regulatory
mechanism for synaptic strengths, which underlies the sys-
tem’s critical behavior. An external stimulus triggers further
activity in the system: at the end of each avalanche the
potential of a random neuron is increased by a small amount
until another neuron arrives at threshold and starts an ava-
lanche. We implement the plasticity rules during a series of
stimuli in order to modify the synaptic strengths, initially
random. Previous studies have verified that the critical
behavior of avalanche distributions does not depend on
parameter values or network properties and that this model
reproduces quantitatively the background spectrum of
measured EEG signals [27-29]. The implementation of a
scale-free network of connections in the present study is
motivated by numerical convenience in terms of CPU time.

In order to implement the alternation between up and
down states, at the end of each avalanche we measure its
size in terms of the sum of depolarizations dv; of all active
neurons, s, = ». 6v;. If the last avalanche is larger than a
threshold, s, > sg’iv", the system transitions into a down
state and neurons active in the last avalanche become
hyperpolarized proportionally to their previous activity;
namely, we reset

v, = V; — hB‘Ui, (1)

where 4 > 0. This rule introduces a short range memory at
the level of a single neuron and models the local inhibition
experienced by a neuron, due to spike adaptation, adeno-
sine accumulation, synaptic vesicle depletion, etc.

Conversely, if the avalanche just ended has a size
Spy = SZ‘L“, the system either will remain in or will tran-
sition into an up state. All neurons firing in the previous
avalanche are set to the depolarized value

v, = vmax(l - SAU/SIEiUn . (2)

The neuron potential depends on the response of the whole
network via s,,, in agreement with measurements of the
neuronal membrane potential, which remains close to the
firing threshold in the up state. sg‘i}“ controls the extension
of the up state and, therefore, the level of excitability of the
system. The high activity in the up state must be sustained
by collective effects in the network; otherwise, the depo-
larized potentials would soon decay to zero, and therefore,
the random stimulation in the up state has an amplitude that
depends on past activity. Equations (1) and (2) each depend
on a single parameter, 7 and s’&‘i}“, which introduces a
memory effect at the level of single neuron activity and

the entire system, respectively. In order to reproduce the
behavior observed experimentally, the parameters sgﬁvn and
h are controlled separately. Our simulations will show that
the ratio R = h/ sgliu“ is the only relevant quantity control-
ling the temporal organization of avalanches.

Numerical simulations show that the system indeed
switches between up and down states with different tem-
poral durations (insets of Fig. 1). The numerical waiting
time distributions (Fig. 2) exhibit the nonmonotonic be-
havior of the experimental curves, where the position of
the minimum is controlled by the value of s‘&‘i}“, and the
power law regime scales with the same exponent ~ — 2 as
experimental data. The agreement between the numerical
and the experimental distribution is confirmed by the
Kolmogorov-Smirnov test at a p = 0.05 significance level.
Both distributions pass the statistical test with p = 0.99
(bottom panel) and p = 0.68 (top panel). The different
contribution from the two states is reflected in the activity
temporal scale (insets of Fig. 2). The up state generates
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FIG. 2 (color online). Waiting time distributions measured
experimentally are compared with the average numerical
distributions for 100 networks with N = 64 000 neurons. Top:
numerical curve (SZT = 140 and h = 0.017) fitting the experi-
mental curve with blue squares in Fig. 1; bottom: numerical
curve (SZ‘L“ = 110 and & = 0.02) fitting the experimental curve
with red diamonds in Fig. 1. In the insets: the waiting time
distribution evaluated separately in the up and down state for the
numerical (upper insets) and the experimental curves (lower
insets). For the numerical curves, statistical error bars not shown
are comparable to the symbol size.
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FIG. 3 (color online). Waiting time distribution measured
numerically for 100 networks of N = 16000 neurons with different
sTin and /. The best agreement is obtained for R = 10~*. In the inset:
waiting time distributions obtained with different stimulations in the
up and down states and without the single neuron state behavior
(h =0).

strongly clustered avalanches, originating at the power law
regime of the waiting time distribution, whose extension
depends on sﬁn. Large At between avalanches generated
in the up state are observed with a very small probability,
which increases with decreasing 4. Conversely, the waiting
time distribution evaluated in the down state has a bell-
shaped behavior centered at large intertimes, which de-
pends on 4; i.e., for a larger disfacilitation of the network
the probability to observe intermediate waiting times
decreases in favor of long Ar.

The presence of the minimum and the height of the
relative maximum are sample dependent (Fig. 1) and for
each sample the agreement between numerical and experi-
mental data depends on the subtle balance between exci-
tation and inhibition. For different samples, optimal
agreement is realized when the ratio R = h/s7in = 107,
For instance, enhancing excitation, by increasing the
threshold value sg‘ilf‘, clearly produces a major shift in the
data (Fig. 3). Increasing inhibition, by increasing the pa-
rameter h, generates the opposite effect, recovering the
good agreement with experimental data. Interestingly, the
avalanche size and duration distributions also reproduce
the experimental scaling behavior for the parameter values,
expressing the balance between excitatory and inhibitory
components. The abrupt transition between the up and
down state, controlled by a threshold mechanism, gener-
ates the minimum observed experimentally. Simulations of
up states and down states only in terms of different external
drives, without the single neuron state dependent behavior
[Egs. (1) and (2)], provide a monotonic waiting time
distribution (inset Fig. 3).

This complex nonmonotonic behavior, controlled by the
system balance level between excitation and inhibition
expressed by the parameter R, does not simply depend on
the occurrence rate. The different behavior with respect to

alive rats [24] could be attributed to a larger separation in
characteristic temporal scales between up and down states.
Indeed, long-lasting down states in our case originate from
waiting times 1 order of magnitude longer than for awake
rats. Avalanches are temporally correlated in the up state,
whereas down states are long term recovery periods where
memory of past activity is erased. A detailed analysis of
power spectra may shed further light on the temporal
features of this alternation. The good agreement with
experimental data indicates that the transition from an up
state to a down state has a high degree of synchronization.
Moreover it confirms that alternation between up and down
states is the expression of a homeostatic regulation which,
during periods of high activity, is activated to control the
excitability of the system and avoid pathological behavior.
The model suggests that the crucial feature of this temporal
evolution is the different single neuron behavior in the two
phases. These collective effects must be supported by the
single neuron behavior which toggles between two prefer-
ential states: a depolarized one in the up state and a hyper-
polarized one in the down state. The model suggests that
the depolarized neuron state is a network effect: the ava-
lanche activity itself determines how close to the firing
threshold a neuron stays in the up state. Conversely, the
hyperpolarized state is a form of temporal autocorrelation
in the neuron activity. The critical state realizes the correct
balance between excitation and inhibition via these self-
regulating mechanisms.
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