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The classic results of de Gennes and Odijk describe the mobility of a semiflexible chain confined in a

nanochannel only in the limits of very weak and very strong confinement, respectively. Using Monte Carlo

sampling of the Kirkwood diffusivity with full hydrodynamic interactions, we show that the mobility of a

semiflexible chain exhibits a broad plateau as a function of extension before transitioning to an Odijk

regime, and that the width of the plateau depends on the anisotropy of the monomers. For the particular

case of DNA in a high ionic strength buffer, which has highly anisotropic monomers, we predict that this

Rouse-like behavior will be observed over most of the measurable chain extensions seen in experiments.
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The configurations and dynamics of a flexible chain
confined in a tube were described quite some time ago by
de Gennes [1–3] and Odijk [4]. Emerging genomics tech-
nologies such as DNA barcoding [5,6] have brought to the
forefront the comparable problem of describing semiflex-
ible chains when they are confined in a nanochannel [7,8].
In this Letter, we show that the classical results for the
mobility in the de Gennes [3] and Odijk regimes [4], which
we will confirm describe the dynamics of flexible chains
over the full range of confinement, are only the limiting
cases for semiflexible chains such as DNA. Moreover,
when DNA in a high ionic strength buffer is used as a
model polymer, we predict that the mobility is independent
of the fractional extension of the chain over the experi-
mentally relevant range of chain extensions [8] (� 20% to
�80%). Thus, the commonly invoked ansatz [3] that the
friction coefficient of a confined, semiflexible chain is
proportional to its extension fails for DNA.

Let us first define what we mean by a ‘‘semiflexible
chain,’’ since this term changes in different contexts [9].
The polymer is described by its contour length L, persis-
tence length lp, and effective width w, such that the chain

consists of N ¼ L=lp persistence lengths. Often, the term

‘‘semiflexible’’ is used in a global context to describe a
chain where L � lp, corresponding to a semiflexible fila-

ment such as actin. In our study of chains confined in
nanochannels, we are concerned about the local flexibility
of the chain on the length scale of the channel size,D � lp.

In this context, the anisotropy of the ‘‘monomers’’ matters,
with a flexible chain corresponding to lp=w � 1 and a

semiflexible chain corresponding to lp=w � 1 [10].

In particular, we will focus on double-stranded DNA in a
high ionic strength buffer that screens electrostatic inter-
actions, which has frequently been used as a model system
for a confined polymer [11]. In these conditions, DNA is

clearly a semiflexible chain, with lp ¼ 53 nm [12] and

w ¼ 4:6 nm [13]. As we will see, this high degree of
anisotropy limits de Gennes’ model [1–3] to very small
values of the fractional extension. The DNA used in experi-
ments can be quite long, normally tens of microns in
length. As a result, the chain is flexible in the global sense
since L � lp.

We already know that the semiflexible nature of DNA
strongly affects its equilibrium extension [13–16]. Figure 1
shows how the average chain extension, hXi, depends on
the degree of confinement for a flexible chain and a semi-
flexible chain. These data were generated by modeling the
chain as a series of Nb ¼ 2048 touching beads [17] of size

FIG. 1 (color online). Averaged extension of a flexible
(lp ¼ 5:3 nm, blue squares) and a semiflexible (lp ¼ 53 nm,

red circles) chain containing 2048 touching beads of width
w ¼ 4:6 nm as a function of the effective channel width,
D� w, available to the chain. To aid the eye, lines correspond-
ing to the Odijk regime (solid line), transition regime (dotted
line), and extended de Gennes/de Gennes regimes (long-dashed
line) are shown.
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w that interact by hard-core excluded-volume interactions.
To give the chain a persistence length of lp, a bending

potential is enforced between trios of beads according to
the discrete wormlike chain model [15,18]. Analogous to
our prior work [15], we generated an equilibrium ensemble
of chain configurations using Monte Carlo simulations
with reptation, crankshaft, and pivot moves [19]. The
simulation was run in each case until the statistical errors,
corrected for the time series autocorrelation [20], were
smaller than the size of the plot symbols.

The classical theories [1,2,4] provide a complete
description for the extension of the flexible chain. Over
almost the full range of extension, the flexible chain is in
the de Gennes regime [1,2]. Here, the chain consists of
isometric compression blobs of characteristic volume D3

containing a subchain of length LsubffiD5=3ðwlpÞ�1=3 [14].

The corresponding extension is hXi ffi LðwlpÞ1=3D�2=3.

A more precise calculation yields hXi�Dð��1Þ=� with
�¼0:5877 being the Flory exponent [15]. In the tightest
channels, the chain crosses over into the Odijk regime [4]
where the chain consists of a series of deflection segments.

The extension here is hXi ¼ L½1� 2�ðD=lpÞ2=3� with

� ¼ 0:09137 a universal prefactor [21].
In contrast, we already know [13–16] that the classical

theories [1,2,4] only correspond to the limiting cases for
the extension of a semiflexible chain. Indeed, in order for a
semiflexble chain to be able to reach a de Gennes regime,
the polymer must have a length of at least L ffi lp

3=w2 in

a channel that is larger than D ffi lp
2=w [14,15]. As a

semiflexible chain is compressed by decreasing the chan-
nel size, the blobs become anisometric [13–15] with

size D2H, where H ffi ðDlpÞ2=3w�1=3. Each one of these

cylindrical blobs contains a subchain of length L� ffi
lp

1=3D4=3w�2=3. This regime was named the ‘‘extended’’

de Gennes regime [15] because the scaling for the exten-

sion in the de Gennes regime, hXi ffi LðwlpÞ1=3D�2=3, ex-

tends to the case of anisometric compression blobs. When
the channel size approaches the order of the persistence
length, D � lp, the chain can no longer form blobs. Here

the behavior crosses into a transition regime where several
simulations [15,16], as well as our results in Fig. 1, indicate
that the extension scales like hXi �D�1 [15,16]. The free
energy of these configurations is unknown, and it is
not clear yet if the behavior is universal. Finally, when
D � lp, the other classical limit of Odijk [4] is recovered.

For DNA confined in a nanochannel, semiflexibility is a
crucial aspect. As the anisotropy of the monomers in-
creases, the width of the transition regime grows and the
maximum extension in the extended de Gennes regime is

compressed to hXi=L ffi ðw=lpÞ1=3. When DNA in a high

ionic strength buffer is used as a model for a confined
polymer [7,8], the extended de Gennes regime and, in
particular, the transition regime encompass almost the
entire experimental range of extensions [15]. Indeed, the
existence of these additional regimes explains [15]

the disagreement between early experiments on DNA
extension in nanochannels [8] and the de Gennes model.
Let us now consider the mobility of a confined semi-

flexible chain. By applying an infinitesimal force fx that is
uniformly distributed along the chain, the corresponding
velocity along the channel axis is

vx ¼ �fx ¼ h�xxifx; (1)

where� is the mobility of the chain. As seen in Eq. (1), we
can obtain the Kirkwood approximation to the mobility
[22,23] from the appropriate component of the hydrody-
namic tensor, �xx, where the brackets refer to an average
over the equilibrium distribution of chain configurations.
For a flexible chain, the number of monomers inside the

volume D3 where the walls screen long-range hydrody-
namic interactions is sufficiently high to permit a simple
scaling law. Simplifying Eq. (1) in terms of the pair corre-
lation function, gðrÞ, following de Gennes , yields

� ¼ N�1
Z

gðrÞ�ðrÞd3r: (2)

In the blob theory [3], the pair correlation function is
replaced with c, the number concentration of segments
inside a blob, and the hydrodynamic screening by the walls
is approximated by �ðrÞ ¼ 1=�r for r < D, and an ex-
ponential decay for r > D [2,3], where � is the solvent
viscosity. Since we only need an approximate result, the
remainder of the calculation is simplified by using spheri-
cal coordinates and integrating over the solid angle [2],

� ¼ 4�c

N

Z D

0

1

�r
r2dr � cD2

�N
: (3)

In the de Gennes regime, the monomer concentration in

the blobs is c ffi ðLsub=lpÞ=D3, which yields c ffi
w�1=3l�4=3

p D�4=3. Recalling that N ¼ L=lp, we recover

the classic result [3],

�� ð1=�LÞhX=Li�1: (4)

In the extended de Gennes regime, the density of

segments is ðL�=lpÞ=ðD2HÞ, which again yields c ffi
w�1=3l�4=3

p D�4=3. As a result, the blob theory predicts
that the diffusion in the extended de Gennes regime is
also given by Eq. (4).
The key assumption leading to Eq. (4) is that the number

of segments in the screening volume, cD3, is large enough
so that each blob is nondraining (Zimm). In other words,
the subchain comprising a blob entrains the fluid inside it,
whereupon the segment-segment hydrodynamics dominate
and the subchain behaves hydrodynamically like a solid
object. Free-draining (Rouse) behavior at the subchain
level should arise when D � 2lp. There is now approxi-

mately one Kuhn length inside D3, which causes each
segment to be an independent friction center. In other
words, the segment-fluid hydrodynamic interactions are
dominant. In this limit, we would expect
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�� ð1=�LÞhX=Li0: (5)

The question is whether the chain reaches the scaling of
Eq. (5) before it reaches the Odijk regime (D � lp). In the

latter case, the chain is like a slender, confined rod. Its
mobility [24]

� � 1

2�
ln

�
lp
2a

�
1� hX=Li

2�

�
3=2

�
(6)

reflects the dominance of segment-wall interactions. The
latter expression involves the bead hydrodynamic radius,
a. We chose a ¼ 1:38 nm so that the chain mobilities in
free solution for lp ¼ 53 nm matched experimental values

for DNA [25]. While we raise this issue for nanochannels,
similar concerns about the draining behavior have been
expressed for DNA in slits [26].

To determine if and when the chain crosses over to
Eq. (5), we computed the Kirkwood mobility through a
Monte Carlo integration of Eq. (1) [27]. For a given chain
configuration, we computed the 3	 3 chain hydrodynamic
tensor,

� ¼ 1

Nb
2

XNb

i;j

�
�ij

6��a
Iþð1��ijÞ�OBðrijÞþ�Wðri;rjÞ

�
:

(7)

In the latter, �ij is the Kronecker delta, ri and rj are the

positions of bead i and j, respectively, and rij ¼ rj � ri.

The hydrodynamic tensor includes a self-diffusion term, a
free-solution Oseen-Burgers tensor [28], �OB, and a wall
term, �W, due to the effects of the no-slip condition at the
channel boundaries. The Oseen-Burgers tensor is accept-
able in this calculation because the beads are hard spheres,
and do not suffer from unphysical behavior caused by
bead-bead overlap. The wall term was calculated using a
numerical solution of Stokes equation, similar to
Jendrejack et al. [28]. We employed a second-order finite
difference approach with a staggered, three-dimensional,
uniform, Cartesian mesh [29] and mass-conserving bound-
ary conditions. Due to the prohibitive computational time
needed to solve the hydrodynamic problem for each chain
configuration, the wall term was calculated and stored on a
grid, and subsequently linearly interpolated during
Monte Carlo averaging. Finally, we note that in each case
the statistical errors of the computed diffusivity, corrected
for the time series autocorrelation [20], are smaller than the
size of all plot symbols.

Figure 2(a) shows the results for the mobility of DNA as
a function of its extension. In the largest channels, corre-
sponding to the smallest fractional extensions, the channel
provides minimal confinement and the chains are ap-

proaching the Zimm free-solution mobility, �� L�3=5.
Outside of this limit, the friction due to the walls is sub-
stantial. If we neglect the wall term in Eq. (7) for a channel
size of 80 nm, the resultant mobility is more than five
times larger.

The key result is that the Rouse scaling in Eq. (5)
encompasses all of the extensions seen in experiments
for DNA [8]. In contrast, Fig. 2(b) shows that Eq. (4) is a
reasonable description for the flexible chain all the way to
the transition to the Odijk regime of Eq. (6). To be more
quantitative, linear regression gives �� hXi�0:874 (R2 ¼
0:998), which agrees very well with the value of ��
hXi�0:61=0:7015 obtained from other flexible chain calcula-
tions [30]. We also simulated an intermediate persistence
length, lp ¼ 23 nm, and found an intermediate result: for a

short extension this chain obeys de Gennes scaling but it
still exhibits a broad transition towards the Odijk result.
In the case of the flexible chain, the crossover between

de Gennes and Odijk mobilities is narrow, mirroring the
extension behavior. If the confinement does not force a
rodlike conformation, this chain is so flexible that it can
only form non-draining blobs. In the semiflexible case, the
large monomer anisotropy leads to a wide gap between the
de Gennes regime and the Odijk regime for the extension.
This gap closely aligns with the beginning and ending of
the mobility plateau in Fig. 2(b). Thus, the existence of

FIG. 2 (color online). Mobility versus extension. All simula-
tions correspond to w ¼ 4:6 nm and a ¼ 1:38 nm. (a) Results
for five different chain lengths for lp ¼ 53 nm. The shaded

region corresponds to the extensions seen in DNA experiments
[8]. (b) Results for three different persistence lengths for
L ¼ 9:42 �m (Nb ¼ 2048 beads). The dotted line is the scaling
of Eq. (4) and the dashed line shows the scaling of Eq. (5). The
solid lines are the approximation in Eq. (6). The vertical lines
are the values for the onset of the scaling hXi=L�D�1 for the
53-nm chain (red [medium gray], hXi=L ¼ 0:15) and the 23-nm
chain (green [medium-dark gray], hXi=L ¼ 0:2).
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additional regimes for the extension of semiflexible chains
explains both the existence of the mobility plateau and the
fact that it grows with increasing persistence length.

While we have focused exclusively on the dynamics of
DNA in a high ionic strength buffer, where electrostatic
interactions are screened, there are DNA barcoding devices
[5] that use low ionic strength to stiffen the DNA back-
bone. As the ionic strength decreases, the predicted values
for the effective width and persistence length begin to
converge [31]. Our analysis thus predicts that DNA will
obey the de Gennes prediction in Eq. (4) in a sufficiently
low ionic strength such that lp=w � 1 and a large enough

channel such that this very high persistence length chain
can form compression blobs. These experiments are tech-
nically challenging, since the length of DNA required to
reach the de Gennes regime in a low ionic strength buffer is
enormous.

In this Letter, we have clearly shown that the hydro-
dynamics of confined semiflexible chains deviate signifi-
cantly from the classic prediction for a flexible chain in
Eq. (4) [2,3]. As there are a large number of publications
using DNA in a high ionic strength buffer as a model
polymer, it is important to keep in mind the stark differ-
ences between the dynamics of a semiflexible chain such as
DNA and the more flexible chains often encountered in
polymer physics [11].
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