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Finite stochastic Markov models play a major role in modeling biological systems. Such models are a

coarse-grained description of the underlying microscopic dynamics and can be considered mesoscopic.

The level of coarse-graining is to a certain extent arbitrary since it depends on the resolution of

accommodating measurements. Here we present a systematic way to simplify such stochastic descriptions

which preserves both the meso-micro and the meso-macro connections. The former is achieved by

demanding locality, the latter by considering cycles on the network of states. Our method preserves

fluctuations of observables much better than naı̈ve approaches.
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In recent years nonequilibrium fluctuations have become
the center interest of stochastic thermodynamics [1,2].
Rare events in situations far from equilibrium can now
be described universally by fluctuation theorems [3–5].
Especially for stochastic modeling of biophysical pro-
cesses, which had started in the 1960s with Hill’s cycle
kinetics [6,7], the attention has shifted from average be-
havior to the importance of fluctuations, cf., e.g., Ref. [8].

Although Hill’s methods were designed for biological
problems, they have also lead to general insights in statis-
tical physics [9] and mathematics [10,11]. It was under-
stood that in nonequilibrium situations currents are driven
by nontrivial forces called affinities. Affinities have a
direct thermodynamic interpretation when they are applied
to cycles on the network of states rather than to the states
themselves [5,9]. This hints at possible redundancy in the
description; indeed, Hill has asked how and when a net-
work reduction would be possible [7]. In the context of
statistical physics such a reduction is referred to as
coarse graining (CG). It was recently shown for a special
CG procedure that the ability to capture fluctuations de-
pends on the preservation of the cycle topology of the
network [12].

In this Letter we present a new paradigm for coarse
graining of stochastic dynamics that preserves the nonequi-
librium steady-state fluctuations of physical currents.
Though we focus on biological situations the method can
be universally applied to any finite model of stochastic
thermodynamics. Our method is based on two require-
ments: (i) the preservation of the topological and algebraic
structure of the cycles of the network and (ii) locality.
Additionally, (iii) the variation of the system’s entropy
along single trajectories [3] is considered to close the
equations. To illustrate our method we consider the
molecular motor kinesin that performs directed motion
along intracellular filaments called microtubuli
[2,13–15]. It has two heads (active sites) where adenosine
triphosphate (ATP) is catalytically split into adenosine

diphosphate (ADP) and inorganic phosphate (P). During
the reaction, the molecule undergoes a conformational
change that couples the two active sites and induces a
mechanical transition. This allows the motor to ‘‘walk’’
in a ‘‘hand-over-hand’’ motion [13].
The catalytic cycle of a single head [Fig. 1(a)] is an

example of general enzymatic activity (Fig. 2). This meso-
scopic, stochastic description with its fluctuations has its
origins in a microscopic, deterministically chaotic dynami-
cal system. Here, we investigate how a stochastic descrip-
tion can be further simplified while preserving its
fluctuations.
Stochastic formalism.—We consider a Markov process

on a finite number of mesoscopic states i 2 ½1; . . . ; N�. We
call them mesoscopic because for physical systems they
amount to a partition of the underlying microscopic phase
space. Transitions between the states i and j occur with
time-independent rate constantswi

j � 0. For simplicity, we

assume that there is only one mechanism by which the
transition between two states can happen (although a

FIG. 1 (color online). (a) The catalytic cycle at kinesin’s active
site. In a four-stage process ATP binds (state T) to the empty
molecule (state E) and is split into � ¼ ADPþ P. Then first P
and later ADP (state D) is released. Since the release of P
happens immediately after the splitting, often a three-stage
process (b) is assumed where the state � is absorbed into its
neighbor states. (c) 6-state model of kinesin [2]. The dashed line
is the mechanical transition that allows the motor to move.
(d) Coarse-grained description with states 3 and 6 reduced.

PRL 108, 228101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

0031-9007=12=108(22)=228101(5) 228101-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.228101


generalization is possible [1,5]). Because of the reversibil-
ity of microscopic physical laws we demand dynamical

reversibility, i.e., wi
j > 0 , wj

i > 0. One can visualize the

system as a graphG ¼ ðV; EÞwith the mesoscopic states as
vertices V and edges E where wi

j > 0. At time t the system

will be in state i with a probability piðtÞ. The flux from
state i to state j is

�i
j
:¼ piw

i
j; i � j: (1)

Assuming connectedness of the network, a unique invari-
ant distribution pi exists [16]. In the steady state the net
influx to each state equals the net outflux (Kirchhoff’s law

for currents Iij :¼ �i
j ��j

i ),

X

j

Iji ¼
X

j

½�j
i ��i

j� ¼
X

j

½pjw
j
i � piw

i
j� ¼ 0 8i: (2)

The steady-state probability distribution can be calculated
explicitly as a polynomial in the rates wi

j using a graph-

theoretic matrix-tree method [7]. Henceforth, all variables
are time independent steady-state quantities unless stated
otherwise. Equation (2) can be used to decompose the
steady-state fluxes using different sets of cycles on G
[5,7,9]. A cycle � of length s� is an ordered set of vertices
which form a self-avoiding closed path, where we identify
cycles differing only by a cyclical permutation of vertices.
Hereafter, when referring to cycles we mean nontrivial
cycles with s� � 3. Central quantities for this work are

the edge affinities Ai
j ¼ logð�i

j=�
j
i Þ. Along a cycle � ¼

ði1; i2; . . . ; is�Þ they add up to cycle affinities

A� ¼ Xs�

k¼1

log

��ik�1

ik

�ik
ik�1

�
¼ Xs�

k¼1

log

�wik�1

ik

wik
ik�1

�
: (3)

In physical models they take only values that reflect the
macroscopic thermodynamic affinities [7,9].

Coarse graining.—We suggest a coarse-graining proce-
dure based on natural requirements: (i) (a) cycle topology:
The number and mutual connections of cycles are pre-
served. This determines possible targets for the reduction.
(i) (b) cycle affinities: The algebraic values of the affinity
of any cycle is preserved. This yields the connection to
the macroscopic level, i.e., thermodynamics. (ii) locality:
Fluxes, probabilities and observables may only change
locally. This yields the connection to the microscopic level,
i.e., the microscopic phase space. (iii) trajectories: The
system’s entropy variation along trajectories is preserved.
This is a natural choice and closes the equations.
To demonstrate our method we address cycles that con-

tain bridge states, e.g., states 3 and 6 in Fig. 1. Bridges are
connected to exactly two neighbor states that are them-
selves not connected to each other as shown in Fig. 2(a).
We use the index b for the target bridge state, and l or r for
the left or right neighbor. Without loss of generality we
assume that there is a positive net current I ¼ Ilb ¼ Ibr > 0
flowing through the bridge from the left to the right neigh-
bor state. The other states, which must not be influenced by
the procedure [cf., (ii)] are summarized in the set V0 � V.
In the CG procedure we absorb the bridge into its neigh-
bors leading to new states l0 and r0 and adjust the transition
rates for the sets of edges El and Er connecting l and r to
the rest of the network. This has to be done in accordance
with requirement (i) (b) yielding A� ¼ A0

� for any cycle in
the network. Demanding the conservation of fluxes along
any edge e 2 E=fel; erg not belonging to the bridge, Eq. (3)
yields

�l0
r0=�

r0
l0 ¼

! ð�l
b�

b
r Þ=ð�r

b�
b
l Þ: (4a)

Any trajectory passing through the two edges (l, b) and
(b; r) in the original model will be a trajectory through
(l0, r0) in the coarse-grained model. The change of a
trajectory’s entropy (starting from a steady-state ensemble)
is the difference of the logarithms of the invariant distri-
bution [3]. With that, (iii) leads to

pl0=pr0 ¼! pl=pr: (4b)

A priori, other closures of the form pl0=pr0 ¼ c are also
possible but lack the advantage of the stochastic thermo-
dynamic interpretation.
Togetherwith the steady-state balance condition [Eq. (2)]

and the locality assumption, Eqs. (4) uniquely determine
all rate constants of the coarse-grained model. They can be
found to be

wi
n0 ¼ wi

n for i 2 V0; n 2 fl; rg; (5a)

wn0
i ¼ wn

i =f for i 2 V0; n 2 fl; rg; (5b)

wl0
r0 ¼ ðI þmÞ=ðfplÞ; (5c)

wr0
l0 ¼ m=ðfprÞ; (5d)

where

FIG. 2 (color online). (a) Illustration of the coarse-graining
procedure that leaves cycle topology constant: reduction of a
bridge b will absorb the two dashed edges of the original graph
(top) into one edge in the coarse-grained graph (bottom). This
also leads to a change of rates along the edges El and Er, whereas
edges E0 connecting only unchanged vertices V0 remain un-
changed. (b) Enzyme catalysis. An enzyme E binds a substrate S
to form a complex ES. The substrate is split to form products P
and p where the latter is always released first. The dynamics can
be modeled with four (top) and three (bottom) states.
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f ¼ ðpl þ pr þ pbÞ=ðpl þ prÞ; (6a)

m ¼ �r
b�

b
l =ðI þ�r

b þ�b
l Þ: (6b)

One may argue that the method might not be practical,
because one has to solve the original model to compute
the rates for the simpler model. However, to derive the
CG model one only needs the steady-state probability dis-
tribution of the original model which is accessible numeri-
cally to arbitrary precision by different means [16]. The
much more difficult task of determining the full fluctuation
spectra of any observable (see below) can then be done in
the simplified model.

Single cycle: simple catalysis model.—The easiest re-
ducible topology is a cycle consisting of four states, e.g.,
the enzyme catalysis presented in Figs. 1(a) and 2(b) where
a transient intermediate state is identified as the bridge. A

naı̈ve approximation for the new rates would be wl0
r0 ¼

wl
bw

b
r h�bi and wr0

l0 ¼ wr
bw

b
l h�bi where h�bi�1 ¼ wb

l þ wb
r

is the time constant for decay out of the bridge state.
Hill [7] derived this result for three linearly connected
states with the center one being transient. This choice is
also the basis of the method proposed in Ref. [12], where
its shortcomings have already been discussed. It fulfills

wl0
r0=w

r0
l0 ¼ ðwl

bw
b
r Þ=ðwr

bw
b
l Þ: (7)

In Ref. [15] this relation is interpreted as a condition on the
local energy landscape and was used to reduce the enzy-
matic reaction of kinesin’s active site [Fig. 1(a)]. If all
other rates are unchanged, Eq. (7) preserves the affinity
[Eq. (3)] of the cycle. However, in general, it leads to a
nonlocal redistribution of steady-state probabilities.
Hence, it does not comply with our method. This yields
another motivation of Eq. (4b). One can easily check that
this condition on the ratio of the new probabilities is the
only one that leads to rates that fulfill Eq. (7).

Fluctuations of physical observables.—Since the CG
procedure changes the mesoscopic state space, coarse-
grained physical observables need to be defined.We consider
physical currents, which are modeled by anti-symmetric

matrices O 2 RN�N that assign a value Oi
j ¼ �Oj

i to each

transition i ! j. The observable ~O for the case where the
bridge state has been eliminated has entries

~Ol0
r0 ¼ Ol

b þOb
r þ ðdl � drÞ; (8a)

~On0
i ¼ On

i þ dn for i 2 V0; n 2 fl; rg; (8b)

~Oi
j ¼ Oi

j for i; j 2 V0: (8c)

The constants dl and dr depend on microscopic dynamics
and the chosen partitioning of phase space. As we do not
know these details, dl and dr act as gauges that do not change
the macroscopic observations; therefore we choose dl �
dr � 0 for simplicity.

A special observable with a differently prescribed gauge
is the quantity

Bi
j ¼ logðwi

j=w
j
i Þ: (9)

It is determined solely by the mesoscopic transition rates
and therefore takes a special role. Seifert identifies it with
the heat dissipated in the medium for transition i ! j [3].
Hill calls it the basic free energy difference between two
mesoscopic states [7]. One finds

~Bl0
r0 ¼ Bl

b þ Bb
r ; (10a)

~Bn0
i ¼ Bn

i � logf for i 2 V0; n 2 fl; rg; (10b)

~Bi
j ¼ Bi

j for i; j 2 V0: (10c)

Equation (10a) is the logarithm of Eq. (7). Equation (10b)
states, that along the edges En, n 2 fl; rg, there is an addi-
tional contribution� logf to ~Bn

i , which is the same for both
neighbors due to the closure [Eq. (4b)]. Equation (10c)
expresses locality and is independent of the closure. We
note that observables which are defined on the states rather
than on the transitions (and therefore are no current ob-
servables) can also be consistently transformed [17].
Multiple cycles: kinesin’s network of states.—To inves-

tigate the steady-state fluctuations of the observables we
consider stochastic trajectories! ¼ ð!0; !1; . . . ; !N!

Þ fea-
turing N! jumps in a prescribed time �! ¼ �. The time-
averaged mean of current observableO along trajectory!,

jO� ð!Þ ¼ 1

�

XN!

i¼1

O!i�1
!i

; (11)

is a bounded random variable with the distribution function
fO� . For � ! 1 it converges weakly and fulfills a large-
deviation principle, i.e.,

fO� ðsÞ ¼ exp½��IOðsÞ þ oð�Þ�; (12)

where oð�Þ stands for a term sublinear in �. Further, by the
Gärtner-Ellis theorem [18], the large-deviation function
IOðsÞ is the unique Legendre transform of the scaled
cumulant generating function (SCGF)

FIG. 3 (color online). Large-deviation function (LDF) IðsÞ for
the entropy production (blue, center), the product (red, left) and
the substrate (green, shifted to the right by s0 ¼ 2) association
for the enzyme model [Fig. 2(b)]. All transition rates are unity
but the release rate for the first product p which has the value
100. The LDF obtained from the fluctuation preserving coarse-
graining method (FPCG) overlaps almost perfectly with the
original model (ori) while the naı̈ve choice strongly changes
fluctuations.
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�ð�Þ ¼ lim
�!1

1

�
log E ½expð��jO� Þ�; (13)

where E½�� denotes the expectation value on the space of
trajectories running for time �. The SCGF can be calculated
[18] as the dominant eigenvalue of the tilted transition
matrixWOð�Þ with entries

ðWOÞij ¼ wi
j expð�Oi

jÞ: (14)

To obtain numerical data for the rate function IOðsÞ of an
observableOwe first calculateWOð�Þ, determine its largest
eigenvalue �ð�Þ and find its Legendre transform with re-
spect to �. For the last step, the algorithm described in
Ref. [19] is used.

Figure 3 shows such numerical results for different
physical currents of the enzyme model [Fig. 2(b)].
Unlike the naı̈ve choice for the rates (dashed lines), our
CG method (dotted lines) preserves steady-state averages
and fluctuations of the original model (solid lines) to a very
high degree. Bounds of the deviation can be obtained from
inequalities for Perron-Frobenius eigenvalues [17].

Our CGmechanism also captures fluctuations of observ-
ables for finite times and in models with multiple cycles.
Figure 1(c) shows kinesin’s network of states [2]. Using
our method [Eqs. (5)] we reduced the bridge states appear-
ing in the diagram. The result of a successive reduction of
states 6 and 3 is shown in Fig. 1(d). Additionally, we
analyzed models with only state 6 reduced and both states
6 and 4 reduced. Figure 4 shows the results of simulations,
and the convergence to the large-deviation rate function
IðsÞ for the total dissipation rate (entropy production in the
medium), the steady-state velocity and the hydrolysis rate
of the kinesin model. The agreement between the original
and the reduced models is extremely good already for finite

times. The rate function IðsÞ for the different models agree
extremely well to the level of being indistinguishable in the
vicinity of the average value. Only in the far tails can one
observe that the result is not exact.
Discussion.—In this Letter we presented a new method

to simplify stochastic dynamics on finite state spaces. A
coarse-graining method that preserves the connection with
both the underlying microscopic dynamics and the macro-
scopic thermodynamics was constructed. Here we consid-
ered bridge states, but the same ideas apply to tree-like
subgraphs. Two biochemical examples where considered:
a generic single-cycle model for enzymatic catalysis and a
well-established multicycle model for the molecular motor
kinesin. Reduction using the new paradigm preserves fluc-
tuations of current observables in great detail. Future work
will focus on coarse graining that includes changes of the
cycle topology.
The authors are indebted to L. Rondoni, A. Puglisi,

S. Herminghaus, and H. Touchette for many illuminating
discussions.
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