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David Claudio-Gonzalez,* André Thiaville, and Jacques Miltat

Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502, 91405 Orsay, France
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We study spin-diffusion effects within a continuously variable magnetization distribution, integrating

with micromagnetics the diffusive model of Zhang and Li [Phys. Rev. Lett. 93, 127204 (2004)]. Current-

driven wall motion is, in the steady velocity regime, shown to be adequately described by an effective

nonlocal nonadiabatic parameter. This parameter is found to be 20% larger than its local counterpart for a

vortex wall in a NiFe nanostrip and hardly modified for a transverse wall. This may account for the yet

unexplained experimental evidence that vortex walls move more easily under current when compared with

transverse walls. It is shown that this effective parameter can be derived from the domain wall structure at

rest.
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Contrarily to charge, spin can accumulate in metals. The
associated diffusion current flows in all directions, giving
rise to nonlocal effects. Beyond transport properties [1,2],
conduction electrons’ spin resonance [3] and spin pumping
[4] provide further testimonies for nonlocality in spin
transport. These works all refer to samples consisting in
piecewise uniform layers or blocks, magnetic or not. Of
special significance to the present work is the noncollinear
geometry where a spin current with polarization transverse
to the magnetization exists, whose absorption in the vicin-
ity of the surface of a magnetic layer creates a torque on the
magnetization, known as spin-transfer torque (STT) [5].
Deciphering the behavior of samples exhibiting continu-
ously variable properties, notably the magnetization ori-
entation, is notoriously arduous since it requires a vector
description of spin currents or of the transverse spin accu-
mulation. Within a nanostrip, on the other hand, a moving
domain wall (DW), because it concentrates all of the
magnetization nonuniformity, acts as a built-in detector
of spin torques [6]. The study of the STT-induced DW
motion is further fueled by potential applications to data
storage [7] and logic [8]. All in all, however, micromag-
netics and spin-polarized transport need to be suitably
admixed for a meaningful comparison between theoretical
expectations and experiments.

The inclusion of STT into micromagnetics has up to now
been performed with local terms that express the STT as a
function of the localmagnetization only. Themagnetization
dynamics is described by the classical Landau-Lifshitz-
Gilbert (LLG) equation [9], augmented with a STT

@ ~m

@t
¼ �0

~Heff � ~mþ � ~m� @ ~m

@t
� ~T; (1)

with ~m ¼ ~M=Ms the unit vector along the local magneti-

zation. The spin-transfer torque ~T in the local form is ex-

pressed as ~Tloc ¼ u@x ~m� �u ~m� @x ~m (@x � @=@x),
where u ¼ JPg�B=ð2eMsÞ is the velocity that represents
the action of the spin-polarized current, with J the charge

current density along the direction of the motion of elec-
trons (x),P the spin polarization of the current,�B the Bohr
magneton, and e > 0 the electronic charge. The second
term of this torque, called nonadiabatic, is simply described
by an additional factor without dimension called �. This
term is necessary for obtaining steady-state DW motion
under constant current, as the steady-state DW velocity v
reads v ¼ ð�=�Þu for any DW structure [10]. Whereas
the adiabatic term determined by u is easily understood in
the limit where the carriers’ polarization exactly follows the
local magnetization, the evaluation of � has stimulated
many theoretical studies [11–16].
Some of the models have led to nonlocal STT forms. For

the truly nonadiabatic term first, early ballistic transport
calculations predicted a torque with an oscillatory spatial
dependence [17]. This was confirmed by free electron
models with exchange coupling to the local magnetization,
owing to which a nonlocal torque was found [16,18,19]
that corresponds to the so-called momentum transfer ex-
pected for atomically sharp DWs [11]. Because of the very
small DW size necessary to observe such an effect, the
influence of this torque term has not been studied in micro-
magnetics. When spin flip is taken into account, however,
the presence of the diffusion term in the carriers’ drift-
diffusion equation implies that the spin density does not
depend solely on the local magnetization. The relevant
length scale (the spin-diffusion length) being closer to
experimental DW sizes, measurable effects of a nonlocal-
ity of STT can be anticipated in this scheme. But this has
not yet been tested, apart from two numerical solutions for
the electrical current density and spin accumulation
[20,21] with, in one case [20], coupling to the magnetiza-
tion dynamics. However, these works pertain to nanopillars
and as of yet have no experimental counterpart. Moreover,
the quantitative differences with the case without carrier
diffusion have not been singled out.
In this Letter, we quantitatively test the effects of spin

diffusion, on real DW structures, by numerically
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implementing the Zhang-Li model into micromagnetics.
As a first case, we investigate the steady-state velocity
regime of DWs in NiFe soft nanostrips, applying current
densities similar to those reported in experiments. In this
regime, comparison to the analytical values obtained from
the local model is indeed possible. Experimentally mea-
sured spin-diffusion parameters are used [22,23]. The non-
equilibrium carriers spin density (hereafter spin density)
� ~m is the solution of [12,24]

@� ~m

@t
¼ D�� ~mþ 1

�sd
~m� � ~m� 1

�sf
� ~m� u@x ~m: (2)

Through the exchange interaction between carriers and
local magnetization, the spin density exerts on the magne-

tization a spin-transfer torque ~T ¼ ð ~m� � ~mÞ=�sd. The
local solution of Eq. (2), namely with D ¼ 0 and no time
derivative, yields the two local STT terms with � ¼
�sd=�sf [and a renormalized velocity uZL ¼ u=ð1þ �2Þ].
Two characteristic lengths are defined by this equation: the
diffusion length during the spin-flip time �sf , �sf ¼

ffiffiffiffiffiffiffiffiffiffi

D�sf
p

,
that is close to the spin-diffusion length of current
perpendicular-to-plane giant magnetoresistance, and the
diffusion length during the s-d exchange time �sd ¼
h=Jex, usually denoted �J ¼

ffiffiffiffiffiffiffiffiffiffi

D�sd
p

(see Ref. [24] for a
discussion of the validity of this description of the effect of
s-d exchange). One nice feature of Eq. (2) is its similarity
to the LLG equation for magnetization dynamics, so that it
can be solved with the same numerical methods (actually,
this is not exactly so as � ~m is orthogonal to ~m, is not
normalized, and is assumed to create no demagnetizing
field). We solve Eqs. (2) and (1) simultaneously, based on a
homemade code developed for the LLG equation [25].

The sample considered is a 300 nm wide (y direction),
5 nm thick (z direction) NiFe soft nanostrip, a material and
size much used in experiments [26,27]. At this size, the two
main DW structures, the asymmetric transverse wall
[ATW, Fig. 1(a)] and the vortex wall [VW, Fig. 2(a)]
have nearly equal energies [28]. For the magnetization
dynamics Eq. (1), a moving calculation box is used [29]
in order to keep the DWalways at its center. The numerical
mesh size is 3� 3� 5 nm3, and the calculation box has a
length (x direction) of 1200 or 3172 nm. Free boundary
conditions apply for Eq. (2). The micromagnetic parame-
ters correspond to the soft NiFe alloy: magnetization den-
sity Ms ¼ 8� 105 A=m, anisotropy K ¼ 0, exchange
constant A ¼ 1� 10�11 J=m, gyromagnetic ratio �0 ¼
2:21� 105 m=C, and damping factor � ¼ 0:02 [29]. The
nominal transport parameters derive from �sf ¼ 5 nm
[22], and �J ¼ 1 nm [23] (hence � ¼ 0:04), with D ¼
0:25� 10�3 m2=s [30]. The simulations methodology is
as follows: we start at t ¼ 0 with a micromagnetically
converged DW under zero current and solve the LLG
equation (1) together with the spin-density equation (2)
simultaneously, under a constant u. The simulation times

required to reach DWmotion at a steady velocity are in the
range of 5–100 ns, where the longest times correspond to
the VW [32]. Equation (2), that contains time constants
as small as 4 fs, requires a very small time step
�t � 0:2 fs, 10–100 times smaller than the typical value
for micromagnetics [25]. We however describe in the
Supplemental Material [33] how it is possible, in certain
limits, to accelerate the calculations by keeping a typical
micromagnetic time step.
The spin densities are shown in Figs. 1(b)–1(d) for the

ATWand Figs. 2(b)–2(d) for the VW. They were calculated
for the equilibrium DW structures. Using other values of
the diffusion constant, e.g., 0 or 10 times higher, gives only
slightly different maps, as the local solution dictates the
overall shape of the spin density. In agreement with
expectations derived from the local solution, the inplane
densities are of order � for an inplane magnetization,
whereas the out-of-plane (z) component is of order unity.
In the vicinity of the vortex core with perpendicular mag-
netization, a contribution of order unity appears in the x
component [Fig. 2(b)]. In order to better visualize the
qualitative differences due to spin diffusion, we project

FIG. 1 (color online). Calculation results for an ATW in a NiFe
nanostrip with 300� 5 nm2 cross section. (a) Magnetization
structure of the ATW at rest, colored according to the inplane
magnetization angle. (b)–(d) Nonequilibrium spin density for the
DW at rest, obtained with �sd=�sf ¼ 0:04 and u ¼ �10 m=s,
shown by its three components along x (b), y (c), and z (d). The
color scale spans �3� 10�5 for the inplane components and
�5� 10�4 for the z component. (e)–(f) Maps of �� obtained for
the DW at rest (e), and moving at steady velocity (f), the colors
spanning the 0–0.1 interval. The color scale for images (b)–(f) is
shown in the center, as well as the direction of motion of the
carriers. All images have the same 300 nm height. (g) Plot of ��
and u� along two horizontal lines, close to the tip of the ATW,
for the DW structure at rest. The line shows the local value
� ¼ 0:04.
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the nonequilibrium spin density � ~m onto the two compo-
nents of the local solution, namely ~m� @x ~m and @x ~m (both
orthogonal to ~m so that no information is lost). Thus we
define

u� ¼ �� ~m � ð ~m� @x ~mÞ
�sdj@x ~mj2 ; ð�uÞ� ¼ �� ~m � @x ~m

�sdj@x ~mj2 : (3)

The first projection represents a nonuniform spin-polarized
current density u�, and the second a nonuniform ð�uÞ�.
Upon division we may evaluate a nonuniform nonadiabatic
coefficient ��. Maps of �� for the ATWand VWare shown
in Figs. 1 and 2, respectively, for the DW at rest (e) and
under stationary motion (f). The curved lines segments
where a divergence appears are inherent to the projection
Eq. (3), but physically meaningless (see Supplemental
Material [33]). For a more quantitative view, numerical
values of u� and �� are provided in the plots (g) obtained
along some characteristic lines. The data reveal an increase
of �� in the regions with large magnetization gradient. The
increase is barely noticeable in the inclined 90� DW-like
regions of the ATW and VW. But around the vortex core,
that is, the smallest magnetic structure in this material, the
increase is close to a factor of 3 [Fig. 2(g)]. This result may
seem counterintuitive, as the spin-density equation (2)
looks at first sight like a diffusion equation, known to
smear out gradients. However, the physics of inhomoge-
neous precession and diffusion has already been shown to
be more subtle [34]. In comparison, the u� maps are
extremely uniform [less than �2% variation around the
vortex core—see Fig. 2(g)—and much less for the ATW—
see Fig. 1(g)].

By examining the velocities of the DWs moving in
steady conditions we observe that one remarkable effect
of spin diffusion is that the steady-state DW velocities
(vdiff) are higher than those predicted by the local solution
of the Zhang and Li model for general �sd=�sf ratio [12],

vZL ¼ �

�

u

1þ �2
: (4)

A comparative panorama of DW velocities is presented in
Table I. As the velocities can be small, and a high precision
is required, local solution control calculations were per-
formed for selected cases. These velocities (vloc) are
virtually identical to the analytical expectation given by
Eq. (4), testifying to the accuracy of the calculations. We
recall that in the case D ¼ 0, the steady-state velocities
predicted by the local STT form are independent of the
DW configuration [10]. The numerical results show, how-
ever, that when taking into account spin diffusion, this is no
longer the case. The velocities in the steady-state regime
are replotted in Fig. 3 as a function of the applied current
density (u), with the local value of � and the DW type as
parameters. Note that the limited stability of the VWat this
size (velocity bounded by jv� uj< 61 m=s [32]) prevents
the use of large currents or large � values.
As seen from Table I and Fig. 3, the differences between

the velocities predicted by the local solution of the Zhang
and Li model and the full numerical solution for an ATW
configuration are very small. However, for the VW con-
figuration the differences are larger. This is illustrated in
Fig. 3(a), where the velocities predicted by Eq. (4) are
drawn for comparison by solid lines. We moreover observe
that the computed velocities are consistent with an effec-
tive nonadiabatic parameter �diff that depends only on the

FIG. 2 (color online). Same results as in Fig. 1, for the case of
a VW. The spin-density color range has become the large one for
the x component (b). The plots (g) of �� and u� now correspond
to horizontal and vertical lines across the vortex core. Note that
the scales are identical to those of Fig. 1.

FIG. 3 (color online). Numerically computed steady-state DW
velocities v as a function of u and for different values of �sd
(hence �), for the ATW (filled symbols) and the VW (open
symbols). (a) Comparison of the computed velocities with spin
diffusion to the analytical results in the local approximation
[Eq. (4), solid lines]. (b) Relative increase of velocity due to
spin diffusion. The horizontal lines display the evaluation of �diff

from the weighted average of �� computed for the DW struc-
tures at rest.

PRL 108, 227208 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

227208-3



DW structure, being larger than the local value by � 1%
for the ATW and by � 20% for the VW [Fig. 3(b)]. The
parameter �diff can be seen as a properly weighted average
over the spatial distribution of the �� parameter shown in
Figs. 1 and 2. In fact, a rederivation of the Thiele equation
proves that, in the case where u� ’ u, the weight function is
simply j@x ~mj2 (see Supplemental Material [33]). The �diff

values predicted by a calculation of the spin density for the
DW at rest are indicated in Fig. 3(b), showing good agree-
ment with the calculations even for non-zero DW veloc-
ities [35]. Thus, the effect of spin diffusion on STT-induced
DW motion at low currents can be quantitatively evaluated
on the DW structure at rest, similarly to the field-induced
motion case owing to Thiele’s approach [36]. The proce-
dure is (i) compute the nonequilibrium spin density � ~m
with the DW at rest, solving Eq. (2) to convergence or
directly its time-independent version (see Supplemental
Material [33]); (ii) compute the �� distribution from
Eq. (3); and (iii) compute �diff by averaging with the
j@x ~mj2 weight function.

Therefore, a simultaneous solution of the diffusive
Zhang and Li model together with the magnetization dy-
namics equation has uncovered a qualitatively new feature
of the spin-transfer torque effect in the presence of spin
diffusion, namely the dependence of the steady-state DW
velocity on DW structure. We show that an effective non-
adiabatic parameter �diff , dependent on the DW structure,
provides a good description of the phenomena, at least in
the steady-state regime. The increase of DW velocity can

be as high as 21% for NiFe nanostrips using realistic
parameters. This increase is related to the presence in the
DW structure of significant magnetization gradients over
the characteristic length scales of the Zhang-Li equation,
namely, the diffusion lengths related to spin flip and s-d
exchange, as shown by an independent analytical work by
A. Manchon and co-workers [37]. This may explain why
VWs are more mobile than ATWs under STT, a feature
observed experimentally but not predicted by the local STT
in a perfect structure. Further studies are required to
understand the modification of the nonsteady DW dynam-
ics by spin diffusion, which is anticipated to be important
as fine magnetic structures like antivortices are known to
occur [29,38].
These results open another possibility to control STT by

modifying the diffusion of the carriers. A related approach
was experimentally tried by Lepadatu et al. [39]. where the
� parameter was shown to be modified by changing the
material’s transport properties by doping. In addition, these
results offer a starting point to study multilayer structures
like spin-valve nanostrips [40,41], where the understand-
ing of the observed increased efficiency of STT to drive
DWs still remains elusive.
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