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We consider electrons on a honeycomb or triangular lattice doped to the saddle point of the band

structure. We assume the system parameters are such that spin density wave (SDW) order emerges below a

temperature TN and investigate the nature of the SDW phase. We argue that at T � TN , the system

develops a uniaxial SDW phase whose ordering pattern breaksOð3Þ � Z4 symmetry and corresponds to an

eight-site unit cell with nonuniform spin moments on different sites. This state is a half-metal—it

preserves the full original Fermi surface, but has gapless charged excitations in one spin branch only. It

allows for electrical control of spin currents and is desirable for nanoscience.
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Introduction.—The electronic properties of single-layer
graphene have been the subject of considerable experimen-
tal and theoretical interest [1]. Near half-filling, a descrip-
tion in terms of noninteracting Dirac electrons captures the
essential physics, since interactions effects are suppressed
by the low density of states (DOS). A sharply different
behavior arises when graphene is strongly doped to 3=8 or
5=8 filling [2]. At this filling, a divergent density of states
and nested Fermi surface (FS) conspire to produce weak
coupling instabilities to an extensive buffet of ordered
states, including spin density waves (SDW) [3–5],
Pomeranchuk metals [6], and d wave superconductors
(SC) [7–9]. A similar situation arises on a triangular lattice
at 3=4 filling [10,11].

It has recently been established using renormalization
group (RG) methods [7] that the two most relevant insta-
bilities at weak coupling are toward SDW and a d-wave
SC. Other potential instabilities, like a charge-density
wave, have much smaller susceptibilities. The SDW vertex
is the largest at intermediate RG scales, but superconduct-
ing vertex eventually overshoots it, making d-wave super-
conductivity the leading weak coupling instability at the
van Hove filling. The SC state has a dþ id gap structure
and breaks time-reversal symmetry [7]. Upon doping away
from van Hove filling, the Cooper and SDW channels
decouple at a scale set by doping, and the RG flow is
altered. In this situation, the SDW, which is the largest at
intermediate RG scales, may become the dominant insta-
bility, and numerical functional RG studies found [8] that
SDW is indeed the leading instability in substantially wide
doping range away from 3=8 or 5=8. Previous work on
SDW order argued that the SDW state is noncoplanar and
has nonzero spin chirality [3,5,10]. Such a state gaps out
the entire Fermi surface (FS).

We argue that the situation is more complex than origi-
nally thought, and the chiral SDW state is present only at
the lowest temperatures. Over a wide intermediate range of
temperatures, a different SDW state emerges in which

SDW order develops simultaneously at three inequivalent
wave vectors Qi, but the three vector order parameters are
all aligned along the same axis. This state has an eight-site
unit cell with nonuniform spin moments and zero net
magnetization [Fig. 1(b)]. Such a state cannot be accessed
starting from a spin Hamiltonian for local moments with a
fixed length and can only be accessed starting from a
model of itinerant fermions. We show that in this state,
unlike in any other known SDW state, the chemical poten-
tial shifts proportionally to the SDW order parameter,
preserving the original Fermi surface for one spin branch
and gapping out the other spin branch. The uniaxial SDW
state is therefore a ‘‘half-metal’’ that allows for electrical
control of spin currents. Such a state is highly desirable for
nanoscience applications.

a) b)

FIG. 1 (color online). (a) The Fermi surface at the doping level
of interest is a hexagon inscribed within a hexagonal Brillouin
zone (BZ), for both honeycomb and triangular lattices. The FS
has three inequivalent corners, which are saddle points of the
dispersion, marked by a vanishing Fermi velocity and a divergent
density of states. The three inequivalent saddle points Mi are
connected by three inequivalent nesting vectors Qi, each of
which is equal to half a reciprocal lattice vector, such that
Qi ¼ �Qi. (b) Spin structure for the uniaxial SDW state. The
SDW order quadruples the unit cell to a unit cell with eight sites
(shaded). The enlarged unit cell has a large spin moment 3� on
two sites and a small spin moment�� on the other six. The total
spin on each unit cell is zero.
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The model.—For definiteness, we focus on doped gra-
phene at 3=8 filling. Our point of departure is the tight
binding model [12], with the nearest-neighbor dispersion
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where � ¼ �t1 at 3=8 filling. The FS then forms a perfect
hexagon inscribed within a hexagonal BZ [Fig. 1(a)]. The
perfect nesting of the FS in doped graphene is quite ro-
bust—it is broken only by third and higher neighbor hop-
pings, which are generally quite small. The Fermi velocity
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where each time k denotes the deviation from a saddle
point. Saddle points give rise to a logarithmic singularity in
the DOS and control the SDW instability at weak coupling.
There are three inequivalent nesting vectors connecting
inequivalent pairs of saddle points [see Fig. 1(a)]:

Q 2 ¼ ð0; 2�= ffiffiffi
3

p Þ; Q1;3 ¼ ð��=3;��=
ffiffiffi
3

p Þ: (3)

Each Qi is equivalent to �Qi, modulo a reciprocal lattice
vector.

For the interactions, we use the low energy model from
[7], which provides an exact description of the system in
the weak coupling limit. This model contains four inter-
actions: density-density, exchange, pair-hopping, and for-
ward scattering, labeled g1, g2, g3, g4, respectively. Of
these, the interactions g4 and g1 do not couple to spin
density waves [7] and may be safely ignored [13]. The
SDW physics is controlled by the density-density interac-
tion g2 (jk;kþQii ! jk;kþQii) and the umklapp pair-
hopping interaction g3 (jk;k0i ! jkþQi;k

0 þQii). The
partition function in the SDW sector can be written as Z ¼R
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where the action is written in terms of electron operators,
a, b are patch labels, and � and � are spin components.

Each nesting vector Qi has associated with it an SDW

order parameter �i ¼ �a;b ¼ g2þg3
3

P
khc y

a;����c b;�i.
The condition for the emergence of each �i is the same:
ððg2 þ g3Þ=t1Þlog2t1=TN ¼ Oð1Þ [7], leaving a large num-
ber of SDW states as potential candidates. We study the

selection of the SDW order within Ginzburg-Landau
theory and by comparing different SDW solutions in the
mean-field approximation for Eq. (4) at arbitrary T < TN .
Ginzburg-Landau theory.—To construct the Ginzburg-

Landau theory, we decouple the quartic interaction terms
by restricting the interaction to the spin channel and a
Hubbard-Stratonovich transformation to collective spin
variables �i. Note that the Hubbard Stratanovich trans-
formation is exact and does not introduce any approxima-
tion. We integrate out the fermions in the Matsubara
frequency representation and obtain an action in terms of
�i in the form
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For T � TN , we can expand (5) in small�i=TN . It is useful
to define the expansion coefficients
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X
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where the integrands �i are expressed in terms of fermionic
Green functions G¼ði!n�"k��Þ�1, Gi¼ði!n�"kþQi
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Diagrammatically, Z1-Z3 are given by ‘‘square’’ diagrams
with four fermionic propagators and ��� in the vertices,

and Z4 is given by a ‘‘hegagonal’’ diagram with six fermi-
onic propagators, (see Fig. 2). The free energy evaluated at
T � TN can be expressed in terms of these coefficients as
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where � is an inessential positive constant.
The quadratic term and the first quartic term in (8) set the

overall magnitude of �2
tot ¼

P
i�

2
i but do not differentiate

between different SDW states. The second quartic term in
(8) determines whether SDW order develops only at one
nesting vector or at all three (depending on the sign of
Z2-Z1-Z3). Finally, the third quartic term and sixth order
term control the relative orientation of the vector order
parameters, if SDW order develops at multiple wave vec-
tors. Close to TN, the expansion to order �4

i is generally
sufficient, but we include the sixth order term because Z3 is
suppressed by an extra factor of TN=t1, which is exponen-
tially small in the weak coupling limit. The relative small-
ness of Z3 arises because in the integrals for Z1, Z2, and Z4,
all fermions can be simultaneously brought to the saddle
points, whereas in the integral for Z3, three fermions can be
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brought simultaneously to saddle points, but the remaining
fermion stays far away from the saddle point and the FS.

We evaluate the coefficients Z1-Z4 to leading order in
small TN=t1 and obtain [13]

Z1 ¼
0:20 log t1

TN

�4T2
c t1

; Z2 ¼ 0:58

�4T2
Nt1

;

Z3 ¼ � 0:08

�2T2
Nt1

TN

t1
; Z4 ¼ � 0:1

T4
Nt1

: (9)

The positivity of Z1 guarantees a second order phase
transition, with the type of SDW order depending on the
signs and relative magnitudes of Z2, Z3, and Z4. Since Z3 is
smaller by TN=t1 than Z1;2, and Z2 is smaller by log t1

TN
than

Z1, it follows that Z2-Z1-Z3 < 0, so the system forms SDW
order simultaneously at all three nesting vectors (the 3Q
state). Meanwhile, the relative orientation of the three
SDW order parameters is controlled by the sign of Z3 at
the smallest �i, and by the sign of Z4 at somewhat larger
�i. Both Z3 and Z4 are negative and favor the nonchiral
SDW order with the three �i all aligned along the same
axis.

An order parameter of the form �ðeiQ3�r þ eiQ1�r �
eiQ2�rÞ leads to spin moments on the lattice of the form
shown in Fig. 1. A quarter of lattice sites have spin moment
3�, the other three quarters have moment ��. Such an
order cannot be obtained from any spin Hamiltonian for
local moments of constant magnitude on every site. Our
result differs from earlier mean-field analysis [11] which
found noncoplanar insulating SDW order at weak cou-
pling. We note, however, the 3Q state that we found,
with nonequal spin length on different sites, was not con-
sidered in that work and other earlier considerations of
SDW order. We found analogous results for fermions on a
triangular lattice at van Hove filling, which are described
by an identical low energy theory provided we neglect
further neighbor hopping.

Properties of a uniaxial SDW.—Is the uniaxial SDW
state a metal or an insulator? To address this issue we

need to compute the fermionic spectrum. Without loss of
generality, we take the SDW to be uniaxial along the z axis,
so that Sz is a good quantum number, and spin-up and spin-
down fermions decouple. Consider the state with �1 ¼
�2 ¼ �3 ¼ �ẑ�3. Up-spins near the three van Hove
points are described by a simple Hamiltonian

H ¼
"1;k � �� � �

� "2;k � �� �

� � "3;k � ��

0
BB@

1
CCA; (10)

where "1, "2, "3 are the dispersions near the van Hove
points, Eq. (2), and �� is the SDW-induced shift of the
chemical potential. The 3� 3 Hamiltonian describing the
spin-down branch is obtained by taking � ! ��. At
k ¼ 0 (i.e., at van Hove points) the energies of spin-up
excitations Ek � �� are ��, ��, and 2�, and the ener-
gies of spin-down excitations are �, �, and �2�. In
conventional SDW states (e.g., SDW on a 2D square
lattice), ��=� / TN=EF is negligibly small and can be
safely neglected. We find that in our case �� ¼ ��, so
that gapless excitations arise in the spin-down spectrum.
To see the unexpected shift of the chemical potential, we

diagonalize Eq. (10) and the corresponding equation for
down spins and inspect six branches of excitations. We find
that fixing �� ¼ �� ensures that both in the paramag-
netic and in the 3Q uniaxial SDW state, there are four
bands with Ek � � and two bands with Ek 	 � for all
momenta in the reduced BZ (see Fig. 3). Since the chemi-
cal potential is fixed by the constraint that the total number
of electrons (equal to the number of states below the
chemical potential) must not change between � ¼ 0 and
� � 0 [14], it follows that we must set �� ¼ ��. For
verification, we computed the thermodynamic potential
�ð�; �Þ from (5), numerically solved the simultaneous
equations @�=@� ¼ 0 and @�=@� ¼ �N, and confirmed
that �� ¼ �� to a high accuracy.
Having determined that �� ¼ ��, we find from (10)

that gapless excitations emerge when "1;k"2;k"3;k ¼ 0,
which has solutions along three lines passing through
each van Hove point. Two of them coincide with the
original FS; the third is directed towards the center of the
BZ. The 3Q uniaxial SDW state is then obviously a metal.
We emphasize, however, that gapless states exist only for
the electrons with spin projection opposite to �. The
electrons with spin projection along � are fully gapped.
Since a Fermi surface exists for one spin projection only,
we dub this state a ‘‘half metal.’’ We found an analogous
‘‘half-metal’’ spectrum for the 3Q uniaxial SDW phase on
the triangular lattice.
The half-metallic nature of the SDW should manifest

itself in numerous experiments. For example, in tunneling
experiments conducted with electrons spin polarized along
the z axis, a hard gap will be seen for down spins, but a
Fermi surface will be seen for up spins. Furthermore, since
the low energy charged excitations involve up spins only,

FIG. 2. The terms quartic in � are produced by processes
represented diagrammatically by square diagrams. The diagrams
for Z2 and Z3 correspond to patterns �3, �3, �1, �1 and �3, �1,
�3, �1, respectively. The sixth order chirality sensitive term is
produced by ‘‘hexagonal diagrams.’’ Sample square and hex-
agonal diagrams are shown above. The integrals are dominated
by momenta that bring all the fermion propagators to the vicinity
of one of the saddle points of the dispersion.
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any charge currents will necessarily also be spin currents.
Thus, the half metal state allows for electrical control of
spin currents, which may be beneficial for nanoscience
applications.

Order parameter manifold.—The uniaxial SDW order
obviously breaks Oð3Þ spin-rotational symmetry. It also
breaks Z4 discrete symmetry associated with either parallel
or antiparallel ordering of�i; i.e., in addition to the (�, �,
�) state which we considered above, there are also (�,��,
��), (��, �, ��), and (� �, ��, �) states. These
states have an identical structure of fermionic excitations
and correspond to the four inequivalent ways to choose
which two of the eight sites of the SDWunit cell carry large
spins [see Fig. 1(b)]. Equivalently, the three other states
from the Z4 manifold are obtained from the (�, �, �) state
by shifting the origin of coordinates to the center of one of
three neighboring hexagons. An interesting possibility,
which deserves further study, is that Z4 symmetry can be
broken beforeOð3Þ symmetry, leading to a state of nematic
type [15].

The phase diagram.—Thus far we have constructed the
Ginzburg-Landau expansion in small �=TN . This expan-
sion becomes less justified as we move towards zero tem-
perature. To investigate the behavior at arbitrary T, we
calculate numerically the full Free energies of the various
SDW states from (5). Upon doing this, we find that the 3Q

uniaxial state has the lowest Free energy over a wide range
of intermediate temperatures, roughly between TN=2 and
TN , but undergoes a first order transition at a lower tem-
perature to the insulating chiral SDW state discussed in
earlier works [3,5,10]. We show the Free energy profile in
Fig. 3(b). We found this behavior both for graphene and for
fermions on a triangular lattice. Intuitively, the chiral SDW
state wins at the lowest T because it has spin-degenerate
excitations and opens a full spectral gap, unlike the half-
metal state.
The Free energy profile in Fig. 3(b) is for weak or

moderate coupling, when TN=t1 
 1. At TN � t1, the
phase diagram is more complex. For completeness, we
discuss the forms of Zi and the phase diagram at TN � t1
in the Supplemental Material [13]. The ordering tempera-
ture TN depends sensitively on the strength of the micro-
scopic interactions. For graphene doped near the saddle
point we estimate TN � 3–30 K, whereas t1 � 3 eV [16].
Thus, at least for doped graphene, we should be decisively
in the limit TN=t1 
 1, where our calculations apply.
Conclusion.—We considered in this Letter the SDW

instability on the honeycomb and triangular lattices when
doped to the saddle points of the dispersion. The SDW
instability is subleading to a d-wave superconducting in-
stability at weak coupling but becomes the leading insta-
bility if superconductivity is suppressed. We found that if
the SDWordering temperature TN is much smaller than the
fermionic bandwidth, then a uniaxial SDW order develops
simultaneously at three inequivalent nesting vectors. This
has an order parameter manifold Oð3Þ � Z4 and corre-
sponds to the ordering pattern shown in Fig. 1. Such a state
can only be obtained from a model of itinerant electrons
with interactions and not from a spin model of local mo-
ments. We found that such a SDW state is a half-metal in
which gapless excitations exist in one spin branch only.
Such a state may be beneficial for nanoscience applications
particularly because charge currents will necessarily also
be spin currents, which allows for electrical control of the
latter.
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